scholarly journals MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

2016 ◽  
Vol 53 (6) ◽  
pp. 1805-1821
Author(s):  
Yun-Ho Ki ◽  
Kisoeb Park
2010 ◽  
Vol 53 (4) ◽  
pp. 674-683 ◽  
Author(s):  
Alexandru Kristály ◽  
Nikolaos S. Papageorgiou ◽  
Csaba Varga

AbstractWe study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the nonlinear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.


2017 ◽  
Vol 37 (1) ◽  
pp. 71
Author(s):  
Kamel Saoudi

Let $\Omega\subset\R^N,$ be a bounded domain with smooth boundary. Let $g:\R^+\to\R^+$ be a continuous on $(0,+\infty)$ non-increasing and satisfying $$c_1=\liminf_{t\to 0^+}g(t)t^{\delta}\leq\underset{t\to 0^+}{\limsup} g(t)t^{\delta}=c_2,$$ for some $c_1,c_2>0$ and $0<\delta<1.$ Let $f(x,s) = h(x,s)e^{bs^{\frac{N}{N-1}}},$ $b>0$ is a constant.Consider the singular functional $I: W^{1,N}(\Omega)\to \R$ defined as \begin{eqnarray*}&&I(u)\eqdef\frac{1}{N}\|u\|^N_{W^{1,N}(\Omega)}-\int_{\Omega}G(u^+)\,{\rm d} x-\int_{\Omega}F(x,u^+) \,{\rm d} x\nonumber\\&& -\frac{1}{q+1}||u||^{q+1}_{L^{q+1}(\partial\Omega)}\nonumber\end{eqnarray*} where $F(x,u)=\int_0^sf(x,s)\,{\rm d}s$, $G(u)=\int_0^s g(s)\,{\rm d}s$. We show that if $u_0\in C^1(\overline{\Omega})$ satisfying $u_0\geq \eta \mbox{dist}(x,\partial\Omega)$, for some $0<\eta$, is a local minimum of $I$ in the $C^1(\overline{\Omega})\cap C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,N}(\Omega)$ topology. This result is useful %for proving multiple solutions to the associated Euler-lagrange equation ${\rm (P)}$ defined below.to prove the multiplicity of positive solutions to critical growth problems with co-normalboundary conditions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Agil K. Khanmamedov ◽  
Nigar F. Gafarova

AbstractAn anharmonic oscillator {T(q)=-\frac{d^{2}}{dx^{2}}+x^{2}+q(x)} on the half-axis {0\leq x<\infty} with the Neumann boundary condition is considered. By means of transformation operators, the direct and inverse spectral problems are studied. We obtain the main integral equations of the inverse problem and prove that the main equation is uniquely solvable. An effective algorithm for reconstruction of perturbed potential is indicated.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Bo Fang ◽  
Yan Chai

We investigate an initial-boundary value problem for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition. We establish, respectively, the conditions on nonlinearity to guarantee thatu(x,t)exists globally or blows up at some finite timet*. Moreover, an upper bound fort*is derived. Under somewhat more restrictive conditions, a lower bound fort*is also obtained.


Sign in / Sign up

Export Citation Format

Share Document