scholarly journals EXISTENCE AND MULTIPLICITY OF NONTRIVIAL SOLUTIONS FOR KLEIN-GORDON-MAXWELL SYSTEM WITH A PARAMETER

2017 ◽  
Vol 54 (3) ◽  
pp. 1015-1030 ◽  
Author(s):  
Guofeng Che ◽  
Haibo Chen
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zhen Zhi ◽  
Lijun Yan ◽  
Zuodong Yang

AbstractIn this paper, we consider the existence of nontrivial solutions for a fractional p-Laplacian equation in a bounded domain. Under different assumptions of nonlinearities, we give existence and multiplicity results respectively. Our approach is based on variational methods and some analytical techniques.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongsen Fan ◽  
Zhiying Deng

AbstractIn this paper, we discuss a class of Kirchhof-type elliptic boundary value problem with Sobolev–Hardy critical exponent and apply the variational method to obtain one positive solution and two nontrivial solutions to the problem under certain conditions.


2019 ◽  
Vol 21 (08) ◽  
pp. 1850077
Author(s):  
Rushun Tian ◽  
Zhi-Qiang Wang ◽  
Leiga Zhao

In this paper, we consider the existence and multiplicity of nontrivial solutions to a quadratically coupled Schrödinger system [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are constants and [Formula: see text], [Formula: see text]. Such type of systems stem from applications in nonlinear optics, Bose–Einstein condensates and plasma physics. The existence (and nonexistence), multiplicity and asymptotic behavior of vector solutions of the system are established via variational methods. In particular, for multiplicity results we develop new techniques for treating variational problems with only partial symmetry for which the classical minimax machinery does not apply directly. For the above system, the variational formulation is only of even symmetry with respect to the first component [Formula: see text] but not with respect to [Formula: see text], and we prove that the number of vector solutions tends to infinity as [Formula: see text] tends to infinity.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350007
Author(s):  
KAIMIN TENG

In this paper, we investigate a hemivariational inequality involving Leray–Lions type operator with critical growth. Some existence and multiple results are obtained through using the concentration compactness principle of P. L. Lions and some nonsmooth critical point theorems.


2005 ◽  
Vol 02 (01) ◽  
pp. 129-182 ◽  
Author(s):  
PHILIPPE BECHOUCHE ◽  
NORBERT J. MAUSER ◽  
SIGMUND SELBERG

We study the behavior of solutions of the Dirac–Maxwell system (DM) in the nonrelativistic limit c → ∞, where c is the speed of light. DM is a nonlinear system of PDEs obtained by coupling the Dirac equation for a 4-spinor to the Maxwell equations for the self-consistent field created by the moving charge of the spinor. The limit c → ∞, sometimes also called post-Newtonian, yields a Schrödinger–Poisson system, where the spin and magnetic field no longer appear. We prove that DM is locally well-posed for H1 data (for fixed c), and that as c → ∞ the existence time grows at least as fast as log(c), provided the data are uniformly bounded in H1. Moreover, if the datum for the Dirac spinor converges in H1, then the solution of DM converges, modulo a phase correction, in C([0,T];H1) to a solution of a Schrödinger–Poisson system. Our results also apply to a mixed state formulation of DM, and give also a convergence result for the Pauli equation as the "semi-nonrelativistic" limit. The proof relies on modifications of the bilinear null form estimates of Klainerman and Machedon, and extends our previous work on the nonrelativistic limit of the Klein–Gordon–Maxwell system.


Author(s):  
Claudianor O. Alves ◽  
Ziqing Yuan ◽  
Lihong Huang

Abstract This paper concerns with the existence of multiple solutions for a class of elliptic problems with discontinuous nonlinearity. By using dual variational methods, properties of the Nehari manifolds and Ekeland's variational principle, we show how the ‘shape’ of the graph of the function A affects the number of nontrivial solutions.


Sign in / Sign up

Export Citation Format

Share Document