Author(s):  
Peyman Haghgooei ◽  
Adrien Corne ◽  
Ehsan Jamshidpour ◽  
Noureddine Takorabet ◽  
Davood Arab Khaburi ◽  
...  

Author(s):  
S. J. Lee ◽  
B. J. Gilmore

Abstract A probabilistic model and methods to determine the means and variances of the velocity and acceleration of stochastically-defined planar pin jointed kinematic chains are presented. The presented model considers the effect of tolerances on link length and radial clearance and uncertainty of pin location as a net effect on the link’s effective length. The determination of the mean values and variances of the output variables requires the calculation of sensitivities of secondary variables with respect to the random variables. It is shown that this computation is straightforward and can be accomplished by a conventional kinematic analysis package. Thus, the concepts of tolerance and clearance have been captured by the model and analysis. The only input data is the nominal linkage model and statistical information. The “effective link length” model is shown to be applicable to both analytical solution and Monte Carlo simulation. The results from both methods are compared. This paper solves the higher-order kinematics problem for the probabilistic design analysis of stochastically defined mechanisms.


Author(s):  
Thomas N. Herzog ◽  
Fritz J. Scheuren ◽  
William E. Winkler
Keyword(s):  

1991 ◽  
Vol 113 (1) ◽  
pp. 84-90 ◽  
Author(s):  
S. J. Lee ◽  
B. J. Gilmore

A probabilistic model and methods to determine the means and variances of the velocity and acceleration within stochastically-defined planar pin jointed kinematic chains are presented. The presented model considers the effect of tolerances on link length and radial clearance and uncertainty of pin location as a net effect on the link’s effective length. The determination of the mean values and variances of the output variables requires the calculation of sensitivities of secondary variables with respect to the random variables. It is shown that this computation is straightforward and can be accomplished by a conventional kinematic analysis package. Thus, the concepts of tolerance and clearance have been captured by the model and analysis. The only input data is the nominal linkage model and statistical information. The “effective link length” model is shown to be applicable to both analytical solution and Monte Carlo simulation. The results from both methods are compared. This paper solves the higher-order kinematics problem for the probabilistic design analysis of stochastically defined mechanisms.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


Sign in / Sign up

Export Citation Format

Share Document