scholarly journals The use of 1H-NMR Relaxation Times of Water Adsorbed on Soils to Monitor Environment Pollution

2013 ◽  
Vol 6 ◽  
pp. ASWR.S12406 ◽  
Author(s):  
Leonid Grunin ◽  
Ekaterina Nikolskaya ◽  
John Edwards

Pursuing the goal to develop an express technique for the characterizing of forest ecology, this paper presents a description of the found dependence of nuclear magnetic resonance (NMR) relaxation times of water in soils on the pollution caused by vehicle exhausts. Test measurements were made in Mari El Republic of Russia where wildwood areas located close to human activity are showing degradation, which has drastically intensified in the resent several years. Samples were collected at distances between 100 m to 1.1 km from the highway towards the direction of virgin forest assuming that their contamination level was naturally varied. The measured spin-spin NMR relaxation time of wetted samples showed a growth of more than 20% with the increase of distance from the pollution source. Here we try to explain this effect. As the conclusion, we propose to use the transverse relaxation time of moisturized soil as an indicator for the environment pollution monitoring.

Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. E215-E221 ◽  
Author(s):  
Elliot Grunewald ◽  
Rosemary Knight

Nuclear magnetic resonance (NMR) relaxation times of geologic materials are closely related to pore geometry. In heterogeneous media, however, the details of this relationship are poorly understood because of a phenomenon known as pore coupling, which arises when diffusing protons sample multiple pores before relaxing. Laboratory experiments allow us to explore whether surface geochemistry can influence pore coupling and how this process affects the observed relaxation-time distribution. Measurements of the NMR response for microporous silica gel packs, treated with varying amounts of surface-coating iron, demonstrate that samples with less iron exhibit stronger pore coupling than those with abundant iron. When pore coupling is strong, the relaxation-time distribution grossly misrepresents the underlying bimodal pore-size distribution of micropores and macropores. Specifically, the bimodal relaxation-time distribution becomes merged and the relative amplitude of the peaks fails to reflect the true macropore and micropore volume. A reduction in pore coupling, observed with increasing iron content, is attributed to a decrease in the distance protons are able to diffuse before relaxing. Basic parameters describing the shape of the relaxation-time distributions for this range of samples are well-predicted by a 1D analytical model. Experimental results conclusively demonstrate that surface geochemistry is an important factor determining the degree to which pore coupling occurs and illustrate how this phenomenon can affect the interpretation of NMR relaxation measurements in heterogeneous porous media.


Stroke ◽  
1986 ◽  
Vol 17 (6) ◽  
pp. 1149-1152 ◽  
Author(s):  
Y Horikawa ◽  
S Naruse ◽  
C Tanaka ◽  
K Hirakawa ◽  
H Nishikawa

2001 ◽  
Vol 19 (3-4) ◽  
pp. 509-512 ◽  
Author(s):  
L. Appolonia ◽  
G.C. Borgia ◽  
V. Bortolotti ◽  
R.J.S. Brown ◽  
P. Fantazzini ◽  
...  

1984 ◽  
Vol 2 (3) ◽  
pp. 250-251 ◽  
Author(s):  
L.K. Misra ◽  
P.A. Narayana ◽  
D. Bearden ◽  
T. Egan ◽  
R.P. Munjaal ◽  
...  

2021 ◽  
Vol 37 (2) ◽  
pp. 219-231
Author(s):  
Jean Frederic Isingizwe Nturambirwe ◽  
Willem Jacobus Perold ◽  
Umezuruike Linus Opara

HighlightsMeasurements of relaxation times in intact banana at micro-Tesla field was achieved.Bulk spin-spin relaxation time highly correlated with best descriptors of banana ripening.A basis for quasi-continuous distribution of spin-spin relaxation in banana was given.Abstract. Achieving fast, low-cost, and non-destructive internal quality testing techniques in the horticultural industry is a challenge. Developing techniques such as ultra-low field nuclear magnetic resonance (NMR) is a promising solution. Banana is a fast ripening fruit, which undergoes many changes in quality characteristics during ripening, and was chosen as a fit choice for extensive fruit quality study by NMR. A commercial NMR system using a superconducting quantum interference device (SQUID) as a sensor and operating at 100µT was used to measure changes that occurred in banana fruit during ripening. The longitudinal and transverse relaxation times (T1 and T2, respectively), were measured on fruit samples progressively drawn from a larger batch under storage. Physico-chemical attributes such as total soluble solids (TSS), titratable acidity (TA), pH, and color parameters were measured and used as reference measurements. Statistical analysis using cross-correlation, linear regression, analysis of variance (ANOVA), and principal components analysis (PCA) were performed to probe the relationships between various quality attributes. T1 showed high correlations with total soluble solids (R = 0.84), sugar:acid ratio (R = 0.84) and color parameters (R from 0.49 to 0.88). T2, on the other hand, was most highly correlated to pH (R = 0.76) but also had a statistically significant but negative correlation with Ri (-0.58 at p <0.05). PCA results separated the first day from the remaining days of the ripening process and the overall variation was mostly explained by color attributes (a* and h), T1, TSS, and TSS/TA. During seven days of ripening in storage, the trend of change in the peel color of banana was best described by L*, a*, h and total color difference (TCD). The index of ripening, Ri, defined based on the apparent change in peel color was highly correlated to TSS, TSS/TA, L*, a*, h, TCD, and T1. The strong similarity between the evolution of T1 and the most commonly approved characteristics of banana ripening suggest that T1 has great potential for characterizing the ripening process of banana. However, an investigation of the full metabolic profile of banana during ripening would provide an understanding of the link between NMR relaxation and ripening characteristics. A distribution of T1 relaxation time of intact banana fruit at the micro-Tesla field was successfully generated using Laplace inversion. A suitable framework of T1-domain based studies on banana ripening also applicable to other fruit was discussed; it would provide a comprehensive understanding of structural changes and water mobility that occur in ripening banana. The SQUID-detected ultra-low field NMR used here shows promise as a tool for probing the quality of intact banana fruit. Keywords: Banana quality, Laplace inversion, Relaxometry, SQUID-NMR.


Sign in / Sign up

Export Citation Format

Share Document