scholarly journals Article Commentary: Retinal Ganglion Cell Loss in Diabetes Associated with Elevated Homocysteine

2009 ◽  
Vol 1 ◽  
pp. OED.S3417 ◽  
Author(s):  
Kenneth S. Shindler

A number of studies have suggested that homocysteine may be a contributing factor to development of retinopathy in diabetic patients based on observed correlations between elevated homocysteine levels and the presence of retinopathy. The significance of such a correlation remains to be determined, and potential mechanisms by which homocysteine might induce retinopathy have not been well characterized. Ganapathy and colleagues 1 used mutant mice that have endogenously elevated homocysteine levels due to heterozygous deletion of the cystathionine-β-synthase gene to examine changes in retinal pathology following induction of diabetes. Their finding that elevated homocysteine levels hastens loss of cells in the retinal ganglion cell layer suggests that toxicity to ganglion cells may warrant further investigation as a potential mechanism of homocysteine enhanced susceptibility to diabetic retinopathy.

Development ◽  
1987 ◽  
Vol 100 (3) ◽  
pp. 411-420
Author(s):  
C. Straznicky ◽  
M. Chehade

In adult domestic chickens, the neurones in the retinal ganglion cell layer are very unevenly disposed such that there is a sixfold increase in neurone density from the retinal edge to the retinal centre. The formation of the high ganglion-cell-density area centralis was studied on chick retinal wholemounts from the 8th day of incubation (E8) to 4 weeks after hatching (4WAH). The density of viable neurones and the number and the distribution of pyknotic neurones in the ganglion cell layer were estimated across the whole retina. Between E8 and E10, the distribution of neurones in the ganglion cell layer was anisodensitic with 53,000 mm-2 in the centre compared to 34,000 mm-2 in the periphery of the retina. Thereafter, a progressively steeper gradient of neurone density developed, which decreased from 24,000 mm-2 in the retinal centre to 6000 mm-2 at the retinal periphery by 4WAH. Neuronal pyknosis in the ganglion cell layer was observed between E9 and E17. From E11 onwards, consistently more pyknotic neurones were found in the peripheral than in the central retina. It was estimated that over the period of cell death approximately twice as many neurones died per unit area in the retinal periphery than in the centre. Retinal area measurements and estimation of neurone densities in the ganglion cell layer after the period of neurone generation and neurone death indicated differential retinal expansion, with more expansion in the peripheral than in the central retina. These observations allow us to conclude that the formation of the area centralis of the chick retina involves (1) slightly higher cell generation in the retinal centre, (2) higher rate of cell loss in the retinal periphery and (3) differential retinal expansion.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


2015 ◽  
Vol 56 (10) ◽  
pp. 6095 ◽  
Author(s):  
Francisco M. Nadal-Nicolás ◽  
Paloma Sobrado-Calvo ◽  
Manuel Jiménez-López ◽  
Manuel Vidal-Sanz ◽  
Marta Agudo-Barriuso

2019 ◽  
Vol 19 (10) ◽  
pp. 41c
Author(s):  
Kara N Cloud ◽  
Min Chen ◽  
Jessica I. W. Morgan ◽  
Geoffrey K. Aguirre

1992 ◽  
Vol 9 (3-4) ◽  
pp. 389-398 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Dȃnia E. Hamassaki-Britto

AbstractA small number of enkephalin-like immunoreactive cells were observed in the ganglion cell layer of the pigeon retina. Many of these neurons were identified as ganglion cells, since they were retrogradely labeled after injections of fluorescent latex microspheres in the contralateral optic tectum. These ganglion cells were mainly distributed in the inferior retina, and their soma sizes ranged from 12–26 μm in the largest axis. The enkephalin-containing ganglion cells appear to represent only a very small percentage of the ganglion cells projecting to the optic tectum (less than 0.1%). Two to 7 weeks after removal of the neural retina, there was an almost complete elimination of an enkephalin-like immunoreactive plexus in layer 3 of the contralateral, rostrodorsal optic tectum. These data provide evidence for the existence of a population of enkephalinergic retinal ganglion cells with projections to the optic tectum.


Sign in / Sign up

Export Citation Format

Share Document