An improved disc infiltrometer method for calculating soil hydraulic properties

2004 ◽  
Vol 84 (3) ◽  
pp. 265-273
Author(s):  
Xuzhang Xue, Renduo Zhang ◽  
Shengxiang Gui

The disc infiltrometer has been established as a field device for in situ measurements of unsaturated infiltration under tensions. Several methods have been developed for calculating hydraulic properties based on infiltration data from the disc infiltrometer. The method by Zhang (1998) has the advantage in using infiltrometer data measured in a relatively short time period to estimate soil hydraulic properties. In this study, we improved this method by replacing the piecewise linear approximation of hydraulic conductivity function (K(h )), which results in overestimated macroscopic capillary length, with the exponential form of K(h). An efficient and accurate iteration procedure was introduced to solve the highly nonlinear equations of the improved method. An experiment was conducted in a large field to measure infiltration processes at various locations with different sizes of disc infiitrometers under different tensions. Based on the infiltration data, the improved method and three other methods in the literature were utilized to estimate soil hydraulic conductivities at different tensions and macroscopic capillary length. Compared with the three methods, the proposed method provided more accurate and stable estimations of the hydraulic conductivity and macroscopic capillary length, using infiltration data collected at short experiment periods within 20 min. Key words: Soil hydraulic conductivity, disc infiltrometer, infiltration rate

2021 ◽  
Author(s):  
Michael Bitterlich ◽  
Richard Pauwels

<p>Hydraulic properties of mycorrhizal soils have rarely been reported and difficulties in directly assigning potential effects to hyphae of arbuscular mycorrhizal fungi (AMF) arise from other consequences of AMF being present, i.e. their influence on growth and water consumption rates of their host plants that both also influence soil hydraulic properties.</p><p>We assumed that the typical nylon meshes used for root-exclusion experiments in mycorrhizal research can provide a dynamic hydraulic barrier. It is expected that the uniform pore size of the rigid meshes causes a sudden hydraulic decoupling of the enmeshed inner volume from the surrounding soil as soon as the mesh pores become air-filled. Growing plants below the soil moisture threshold for hydraulic decoupling would minimize plant-size effects on root-exclusion compartments and allow for a more direct assignment of hyphal presence to modulations in soil hydraulic properties.</p><p>We carried out water retention and hydraulic conductivity measurements with two tensiometers introduced in two different heights in a cylindrical compartment (250 cm³) containing a loamy sand, either with or without the introduction of a 20 µm nylon mesh equidistantly between the tensiometers. Introduction of a mesh reduced hydraulic conductivity across the soil volumes by two orders of magnitude from 471 to 6 µm d<sup>-1</sup> at 20% volumetric water content.</p><p>We grew maize plants inoculated or not with Rhizophagus irregularis in the same soil in pots that contained root-exclusion compartments while maintaining 20% volumetric water content. When hyphae were present in the compartments, water potential and unsaturated hydraulic conductivity increased for a given water content compared to compartments free of hyphae. These differences increased with progressive soil drying.</p><p>We conclude that water extractability from soils distant to roots can be facilitated under dry conditions when AMF hyphae are present.</p><p> </p>


1996 ◽  
Vol 76 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Baldev Singh ◽  
D. S. Chanasyk ◽  
W. B. McGill

The effects of tillage on soil hydraulic properties are unclear from the literature and residue effects are little reported. The hydraulic properties of an Orthic Black Chernozem under three tillage-residue systems in central Alberta — tillage with straw incorporated (till+straw) or removed (till−straw) — and no tillage with straw on the surface (no till+straw) — were studied for 2 yr. Measurements began in the 9th year of continuous barley (Hordeum vulgare L.).Plant-available water capacity differed among treatments only in the 0–2.5 cm layer, due to differences in water retention at −1500 kPa. Pore size partitioning revealed relatively high macroporosities (14–18% of total porosity) and residual porosity (34–41% of total porosity), but no treatment differences in the tillage layer. Saturated hydraulic conductivity (Ksat), infiltration rate and cumulative infiltration at 1 h followed the trend: no till+straw > till+straw > till−straw. Infiltration characteristics and hydraulic conductivity had considerable temporal variation. Interestingly, field and laboratory measurements gave the same order of magnitude of transmission characteristics. The common similarity of the no till+straw and the till+straw treatments and their usual difference from the till−straw treatment, especially in the water transmission characteristics, indicate the importance of the return of residue to the soil. The influence of straw on soil hydraulic properties does not appear to depend on whether it was incorporated or not. Key words: tillage, straw, residue, soil hydraulic properties, infiltration, pore size distribution


2018 ◽  
Vol 66 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Camila R. Bezerra-Coelho ◽  
Luwen Zhuang ◽  
Maria C. Barbosa ◽  
Miguel Alfaro Soto ◽  
Martinus Th. van Genuchten

AbstractMany soil, hydrologic and environmental applications require information about the unsaturated soil hydraulic properties. The evaporation method has long been used for estimating the drying branches of the soil hydraulic functions. An increasingly popular version of the evaporation method is the semi-automated HYPROP©measurement system (HMS) commercialized by Decagon Devices (Pullman, WA) and UMS AG (München, Germany). Several studies were previously carried out to test the HMS methodology by using the Richards equation and the van-Genuchten-Mualem (VG) or Kosugi-Mualem soil hydraulic functions to obtain synthetic data for use in the HMS analysis, and then to compare results against the original hydraulic properties. Using HYDRUS-1D, we carried out independent tests of the HYPROP system as applied to the VG functions for a broad range of soil textures. Our results closely agreed with previous findings. Accurate estimates were especially obtained for the soil water retention curve and its parameters, at least over the range of available retention measurements. We also successfully tested a dual-porosity soil, as well as an extremely coarse medium with a very high van Genuchtennvalue. The latter case gave excellent results for water retention, but failed for the hydraulic conductivity. In many cases, especially for soils with intermediate and highnvalues, an independent estimate of the saturated hydraulic conductivity should be obtained. Overall, the HMS methodology performed extremely well and as such constitutes a much-needed addition to current soil hydraulic measurement techniques.


2020 ◽  
Author(s):  
Mirko Castellini ◽  
Simone Di Prima ◽  
Anna Maria Stellacci ◽  
Massimo Iovino ◽  
Vincenzo Bagarello

<p>Testing new experimental procedures to assess the effects of the drops impact on the soil sealing formation is a main topic in soil hydrology.</p><p>In this field investigation, the methodological approach proposed first by Bagarello et al. (2014) was extended to account for a greater soil infiltration surface (i.e., about 3.5 times higher), a higher range and number of heights of water pouring and to evaluate the different impact on soil management. For this purpose, the effects of three water pouring heights (low, L=3 cm; medium, M=100 cm; high, H=200 cm) on both no-tilled (NT) and conventionally tilled (CT) loam soil were investigated by Beerkan infiltration runs and using the BEST-procedure of data analysis to estimate the soil hydraulic properties.</p><p>Final infiltration rate decreased when perturbing runs (i.e., M and H) were carried out as compared with the non-perturbing (L) ones (by a factor of 1.5-3.1 under NT and 3.4-4.4 under CT). Similarly, the water retention scale parameter, h<sub>g</sub>, increased (i.e., higher in absolute terms) by a factor 1.6-1.8 under NT and by a factor 1.7 under CT. Saturated hydraulic conductivity, K<sub>s</sub>, changed significantly as a function of the increase of water pouring height; regardless of the soil management, perturbing runs caused a reduction in soil permeability by a factor 5 or 6. Effects on hydraulic functions (i.e., soil water retention curve and hydraulic conductivity function), obtained with the BEST-Steady algorithm, were also highlighted. For instance, differences in water retention curve at fixed soil pressure head values (i.e., field capacity, FC, and permanent wilting point, PWP) due to perturbing and non-perturbing runs, were estimated as higher under NT (3.8%) than CT (3.4%) for FC, and equal to 2.1% or 1.6% for PWP.</p><p>Main results of this investigation confirm that a recently tilled loamy soil, without vegetation cover, can be less resilient as compared to a no-tilled one, and that tested water pouring heights methodology looks promising to mimic effects of high energy rainfall events and to quantify the soil sealing effects under alternative management of the soil.</p><p><strong>Acknowledgments</strong></p><p>The work was supported by the project “STRATEGA, Sperimentazione e TRAsferimento di TEcniche innovative di aGricoltura conservativA”, funded by Regione Puglia–Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale, CUP: B36J14001230007.</p><p><strong> </strong><strong>References</strong></p><p>Bagarello, V., Castellini, M., Di Prima, S., Iovino, M. 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501. https://doi.org/10.1016/j.geoderma.2013.08.032</p>


2020 ◽  
Author(s):  
Mahyar Naseri ◽  
Sascha C. Iden ◽  
Wolfgang Durner

<p>Stony soils are soils that contain a high amount of stones and are widespread all over the world.  The effective soil hydraulic properties (SHP), i.e. the water retention curve (WRC) and the hydraulic conductivity curve (HCC) are influenced by the presence of stones in the soil. This influence is normally neglected in vadose zone modeling due to the considerable measurement challenges in stony soils. The available data on the effect of stones on SHP is scarce and there is not a systematic modeling approach to obtain the effective SHP in stony soils. Most of the past studies are limited to the effect of stones on the WRC and saturated hydraulic conductivity and low and medium stone contents (up to 40 % v/v). We investigated the effect of stone content on the effective SHP of stony soils through a series of evaporation experiments. Two soil materials a) sandy loam and b) silt loam as background soils were packed with different volumetric contents (0, 10, 30 and 60 %) of medium stones were in containers with a volume of 5060 cm<sup>3</sup>. Volumetric stone contents were chosen in a way to present stone-free, moderately stony and highly stony soils. All of the experiments were carried out in two replicate packings with an almost identical bulk density. Packed samples were saturated with water from the bottom and subjected to evaporation in a climate-controlled room. During the evaporation experiments, the pressure head and soil temperature were continuously monitored and the water loss from the soil columns was measured with a balance. The dewpoint method provided additional data on the WRC in the dry soil. The resulting data were evaluated by inverse modeling with the Richards equation to identify effective SHP and to analyze the effect of stone content on the evaporation rate, soil temperature, the effective WRC and the effective HCC. The applied methodology was successful in identifying effective SHP with high precision over the full moisture range. The results reveal a quicker transition from stage I to stage II of evaporation in highly stony soils. Evaporation rate reduces with the increase of the volumetric stone content. The existence of a high amount of stone content shorten stage II of evaporation driven by the vapor diffusion through the restricted soil evaporative surface.</p>


2020 ◽  
Vol 34 (26) ◽  
pp. 5543-5556
Author(s):  
David Moret‐Fernández ◽  
Borja Latorre ◽  
Maria V. López ◽  
Yolanda Pueyo ◽  
Laurent Lassabatere ◽  
...  

2021 ◽  
Author(s):  
Ifeoma Edeh ◽  
Ondřej Mašek

<p>The physical properties of biochar have been shown to dramatically influence its performance as a soil amendment. Biochar particle size is one of key parameters, as it controls its specific surface area, shape, and pore distribution. Therefore, this study assessed the role of biochar particle size and hydrophobicity in controlling soil water movement and retention. Softwood pellet biochar in five particle size ranges (>2 mm, 2 – 0.5 mm, 0.5 – 0.25 mm, 0.25 – 0.063mm and <0.063 mm) was used for the experiment. These particle sizes were tested on 2 soil types (sandy loam and loamy sand) at four different application rates (1, 2, 4 and 8%).  Our results showed that biochar hydrophobicity increased with decreasing biochar particle size, leading to a reduction in its water retention capacity. The effect of biochar on soil hydraulic properties varied with different rate of application and particle sizes. With increasing rate of application, water retention increased while hydraulic conductivity decreased. Water content at field capacity, permanent wilting point, and the available water content increased with increasing biochar particle size. The soil hydraulic conductivity increased with decreasing particle sizes apart from biochar particles <0.063mm which showed a significant (p≤0.05) decrease compared to the larger particle sizes. The results clearly showed that both biochar intra-porosity and inter-porosity are important factors affecting soil hydraulic properties. Biochar interpores affected mainly hydraulic conductivity, both interpores and intrapores controlled soil water retention properties. Our results suggest that for a more effective increase in soil water retention in sandy loam and loamy sand, the use of hydrophilic biochar with high intra-porosity is recommended.</p>


Sign in / Sign up

Export Citation Format

Share Document