soil sealing
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 50)

H-INDEX

19
(FIVE YEARS 3)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 146
Author(s):  
Esther Sánchez-Almodóvar ◽  
Jorge Olcina-Cantos ◽  
Javier Martí-Talavera

The management of runoff during torrential rainfall events is a significant problem in urban areas of southeast Spain. The increase in soil sealing and the occupation of areas prone to flooding have aggravated this problem. Due to this situation, municipal administrations, in collaboration with the concession holder for the supply of water and sewage services, Hidraqua Gestión Integral de Aguas de Levante SA, are committed a more efficient management of non-conventional water resources. An example of this can be found in the municipalities of Rojales, Daya Nueva, and San Fulgencio. These towns are located in the Bajo Segura region of the province of Alicante, where various initiatives have been implemented that break away from the traditional paradigm of rigid infrastructures. These initiatives include green spaces or areas, and sustainable urban drainage systems (SUDS) or nature-based solutions (NBS). This article presents various case studies. Firstly, in the town of Rojales, where several actions are being undertaken to improve the management of wastewater and rainwater and provide a solution to unauthorised dumping, as well as encouraging the use of reclaimed water with the creation of a recreational green area, El Recorral Park. Secondly, in the case of Daya Nueva, the Europa Park constitutes a recreational green area, Europa Park, facilitates runoff drainage by SUDS and NBS. Finally, the creation of a floodable pond in the municipality of San Fulgencio encourages the use of wastewater, thus avoiding the discharge of this non-conventional water resource into the sea. In addition, the pond facilitates the appropriate management of runoff water. The working method in this article has been twofold: firstly, bibliographical references have been consulted from other national and international areas; and secondly, the technical projects in the case studies have been analysed in detail. Several field trips have been made to the selected municipalities, accompanied by the technical personnel in charge of the execution of the projects, to examine the measures adopted. The results show that the implementation of these systems contributes to adapting to climate change and creates more resilient urban spaces.


2022 ◽  
Vol 955 (1) ◽  
pp. 012019
Author(s):  
TH Heikoop

Abstract Private gardens play an important role as urban green space in cities and can improve the microclimate and address the impacts of climate change. Paving over front yards, soil sealing, reduces the environmental benefit of front yards. Residential private front yards comprise a considerable portion of land and green space in the suburbs of cities. Currently there is no method available to determine sealed soil percentages of private front yards. This study took place in the Bloemhof suburban district in Rotterdam. Four streets were selected and a total of 123 houses with 105 private front yards were assessed. Five sealed soil reference categories were defined and Google Street View (GSV) images were used to assess the front yards. This study found that the aggregated sealed soil percentages of the private front yards in the four selected streets are very high: 69%, 78%, 96%, and 97%. These front yards have a significant greening potential. The new insight in this study is that the use of Google Street View images for categorisation of front yards leads to values for individual front yard that can be used for comparison and for establishing sealed soil values per street.


2021 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Mohamed A. E. AbdelRahman ◽  
Ahmed A. Afifi ◽  
Antonio Scopa

In the current study the processes of soil deterioration over the past five decades was evaluated. Land degradation risk, status, and rate were assessed in Kafr El-Sheikh Governorate, Egypt, in 2016 using OLI and ETM (2002) remote sensing data, and soil data from 1961.A quantitative deterioration was produced based on the comparative study approach in the integrated weighted sum, weighted overlay, and fuzzy model. The parameters used were soil depth, texture, pH, EC, OM, SAR, ESP, CEC, CaCO3, BD, N, P, K. The variables were based on the measurements derived from the Universal Soil Loss Equation (USLE). The results of the implemented USLE in the GIS model-builder revealed the prevalence of severe soil deterioration processes in the region, and include four main deterioration risks: water-logging, soil compaction, salinization, and alkalization. During 2002–2016, soil sealing took place on 36,297.87 ha of the study area (9.7% of the total area). Urban sprawl was one of the most noticed problems that became apparent during the fieldwork during the inventory of land resources in the investigation area. Soil sealing is one of the hidden manifestations of desertification, and it is the implicit explanation for the lost land for the agricultural production process. The study showed that the investigated soil, as a part of north Nile Delta, is a very fragile system that needs to be protected, especially under the effect of climate change in areas overloaded with population, and because of their negative effects on soil properties. According to the results of this study, it is recommended that the same approach be applied to similar agricultural semi-arid regions to help in building a database of land resources for agricultural use that will be very useful for the decision-maker to monitor changes on agricultural lands.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3635
Author(s):  
Roberta D’Ambrosio ◽  
Antonia Longobardi ◽  
Alessandro Balbo ◽  
Anacleto Rizzo

Urban sprawl and soil sealing has gradually led to an impervious surface increase with consequences on the enhancement of flooding risk. During the last decades, a hybrid approach involving both traditional storm water detention tanks (SWDTs) and low-impact development (LID) has resulted in the best solution to manage urban flooding and to improve city resilience. This research aimed at a modeling comparison between drainage scenarios involving the mentioned hybrid approach (H-SM), with (de)centralized LID supporting SWDTs, and a scenario representative of the centralized approach only involving SWDTs (C-SM). Results highlighted that the implementation of H-SM approaches could be a great opportunity to reduce SWDTs volumes. However, the performances varied according to the typology of implemented LID, their parameterization with specific reference to the draining time, and the rainfall severity. Overall, with the increase of rainfall severity and the decrease of draining time, a decrease of retention performances can be observed with SWDTs volume reductions moving from 100% to 28%. In addition, without expecting to implement multicriteria techniques, a preliminary cost analysis pointed out that the larger investment effort of the (de)centralized LID could be, in specific cases, overtaken by the cost advantages resulting from the reduction of the SWDTs volumes.


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 661-675
Author(s):  
Roisin O'Riordan ◽  
Jess Davies ◽  
Carly Stevens ◽  
John N. Quinton

Abstract. Urban soils are of increasing interest for their potential to provide ecosystem services such as carbon storage and nutrient cycling. Despite this, there is limited knowledge on how soil sealing with impervious surfaces, a common disturbance in urban environments, affects these important ecosystem services. In this paper, we investigate the effect of soil sealing on soil properties, soil carbon and soil nutrient stocks. We undertook a comparative survey of sealed and unsealed green space soils across the UK city of Manchester. Our results reveal that the context of urban soil and the anthropogenic artefacts added to soil have a great influence on soil properties and functions. In general, sealing reduced soil carbon and nutrient stocks compared to green space soil; however, where there were anthropogenic additions of organic and mineral artefacts, this led to increases in soil carbon and nitrate content. Anthropogenic additions led to carbon stocks equivalent to or larger than those in green spaces; this was likely a result of charcoal additions, leading to carbon stores with long residence times. This suggests that in areas with an industrial past, anthropogenic additions can lead to a legacy carbon store in urban soil and make important contributions to urban soil carbon budgets. These findings shed light on the heterogeneity of urban sealed soil and the influence of anthropogenic artefacts on soil functions. Our research highlights the need to gain a further understanding of urban soil processes, in both sealed and unsealed soils, and of the influence and legacy of anthropogenic additions for soil functions and important ecosystem services.


2021 ◽  
Vol 16 (10) ◽  
pp. 104019
Author(s):  
Léa Tardieu ◽  
Perrine Hamel ◽  
Vincent Viguié ◽  
Lana Coste ◽  
Harold Levrel

Author(s):  
Manon Navarro-Leblond ◽  
Ignacio Meléndez-Pastor ◽  
Jose Navarro-Pedreño ◽  
Ignacio Gómez Lucas

The University Miguel Hernández of Elche was created in 1996 and its headquarters is located in the city of Elche. A new campus was developed where new buildings and infrastructures have been established for over 25 years in the north of the city. The university is growing, and the land cover/land use is changing, adapted to the new infrastructures. In fact, the landscape changed from a periurban agricultural area mixed with other activities into an urbanized area integrated into the city. The purpose of this work was to evaluate the progressive sealing of the soil and the consequences on the surface hydrology. The area is close to the Palmeral of Elche, a landscape of date palm groves with an ancient irrigation system, which is a World Heritage Cultural Landscape recognized by UNESCO. The evolution of the land occupation was analyzed based on the Aerial National Orthophotography Plan (PNOA). Soil sealing and the modifications of the hydrological ancient irrigation system were detected. Based on the results, proposals for improvement are made in order to implement green infrastructures and landscape recovery that can alleviate the possible negative effects of the soil sealing in the area occupied by the university.


2021 ◽  
Vol 5 ◽  
Author(s):  
Santiago Larregla ◽  
Maite Gandariasbeitia ◽  
Mikel Ojinaga ◽  
Sorkunde Mendarte ◽  
María del Mar Guerrero ◽  
...  

Phytophthora capsici is one of the oomycetes that affects protected pepper crops in different agroclimatic areas of Spain. Currently, environmentally friendly strategies such as biodisinfestation for plant disease control have become increasingly popular. In this study, the effect of released gases during biodisinfestation with a fresh manures mixture amendment on P. capsici oospore viability was determined. A biodisinfestation trial was performed in a greenhouse located in northern Spain (Biscay), with a mixture of fresh sheep (2 kg m−2) and dry poultry manures (0.5 kg m−2) followed by soil sealing with a transparent polyethylene plastic film for 21 days (onset June 15th). Gases were sampled from the aerial cavity of biodisinfested plots at different days after soil sealing (0–1–2–3–4–7–9–11, and 14 days). Vacutainer tubes were incubated at 20°C with oospores of P. capsici that were previously placed under vacuum and refilled with extracted gases. Treatments assayed were gases from different sampling times (0–1–2–3–4–7–9–11–14 days, and succession of days 1–2–3–4–7–9–11–14) combined with different exposure times (7–14–21 days) at 20°C in the laboratory. Control treatments were included: air-tubes and vacuum-tubes. An additional reference treatment under real field conditions was also considered: buried oospores at 15 cm depth in the biodisinfested plots. Oospore viability was determined with the plasmolysis method. The most effective treatment was the succession of gases collected during all sampling days. The significant but slight reduction in oospore viability by exposure to the different gas treatments was consistent with the low dose of applied amendment and the low soil temperature registered at 15 cm depth during soil biodisinfestation (>25°C−100% time, >35°C−23%, >40°C−3%). The above circumstances might have generated a small quantity of gases with low impact on oospore viability. The biodisinfested soil at 15 cm depth reference treatment showed the lowest oospore viability in all the exposure times assayed. The overlap of thermal and higher biofumigation effects in this treatment could likely be responsible for its greater efficacy. A disinfectant effect purely attributable to released gases throughout biodisinfestation has been demonstrated. We believe that our research will serve as a base for future application in agro-environments with reduced thermal inactivation effects.


Urban Studies ◽  
2021 ◽  
pp. 004209802110232
Author(s):  
Stefan Jünger

Environmental hazards affect people from different income groups and migration backgrounds on different levels. The research on environmental inequalities and environmental justice has proposed several theories to explain such inequities; still, it remains unclear which of these theories applies to the German societal context. This research investigates whether individual-level income differences between Germans and migrants account for objectively measured exposure to the environmental goods and bads of land use, specifically soil sealing and green spaces. Marginal effects and predictions based on georeferenced survey data from the German General Social Survey reveal that Germans with higher incomes live in areas with better neighbourhood quality. Germans with lower incomes are exposed to fewer disadvantages stemming from land use, and there is no marginal difference between nonurban and urban municipalities. Spatial assimilation in high-income groups occurs; however, the difference in low-income groups can be explained by place stratification and discrimination in the housing market. While this study uses more indirect and non-hazardous measures of environmental quality – in contrast to air pollution or noise – it provides evidence that such indicators also create distributional injustices in Germany.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4001
Author(s):  
Giovanni Ferrari ◽  
Federico Ioverno ◽  
Marco Sozzi ◽  
Francesco Marinello ◽  
Andrea Pezzuolo

The exploitation of bioenergy plays a key role in the process of decarbonising the economic system. Huge efforts have been made to develop bioenergy and other renewable energy systems, but it is necessary to investigate the costs and problems associated with these technologies. Soil consumption and, in particular, soil sealing are some of these aspects that should be carefully evaluated. Agricultural biogas plants (ABPs) often remove areas dedicated to agricultural activities and require broad paved areas for the associated facilities. This study aimed to (i) assess the surfaces destined to become facilities and buildings in ABPs, (ii) correlate these surfaces with each other and to the installed powers of the plants, and (iii) estimate the consumption of soil in bioenergy applications in Italy. Two hundred ABPs were sampled from an overall population of 1939, and the extents of the facilities were measured by aerial and satellite observations. An ABP with an installed power of 1000 kW covers an average surface area of up to 23,576 m2. Most of this surface, 97.9%, is obtained from previously cultivated areas. The ABP analysis proved that 24.7 m2 of surface area produces 1 kW of power by bioenergy. The obtained model estimated a total consumption of soil by ABPs in Italy of 31,761,235 m2. This research can support stakeholders in cost-benefit analyses to design energy systems based on renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document