scholarly journals Determining the Influence of Sample Preparation and Feed Form on the Predictability of the Near Infrared Reflectance Spectroscopy Technique

Author(s):  
Caitlin E. Evans ◽  
Nana S. Frempong ◽  
Thomas N. Nortey ◽  
Charles R. Stark ◽  
Chad B. Paulk
2009 ◽  
Vol 89 (5) ◽  
pp. 531-541 ◽  
Author(s):  
C Nduwamungu ◽  
N Ziadi ◽  
L -É Parent ◽  
G F Tremblay ◽  
L Thuriès

Near infrared reflectance spectroscopy (NIRS) is a cost- and time-effective and environmentally friendly technique that could be an alternative to conventional soil analysis methods. In this review, we focussed on factors that hamper the potential application of NIRS in soil analysis. The reported studies differed in many aspects, including sample preparation, reference methods, spectrum acquisition and pre-treatments, and regression methods. The most significant opportunities provided by NIRS in soil analysis include its potential use in situ, the determination of various biological, chemical, and physical properties using a single spectrum per sample, and an estimated reduction of analytical cost of at least 50%. Contradictory results among studies on NIRS utilisation in soil analysis are partly related to variations in sample preparation and reference methods. The following calibration statistics appear to be most appropriate for comparing NIRS performance across soil attributes: (i) coefficient of determination (r2), (ii) ratio of performance deviation (RPD), (iii) coefficient of regression (b), and (iv) ratio of the standard error of prediction (SEP) to the standard error of the reference method (SER), i.e., the ratio of standard errors (RSE). Further investigations on issues such as (i) RSE guidelines, (ii) correlation between NIRS spectrophotometers, (iii) correlation of different reference methods for a given attribute to soil spectra, (iv) identification of key factors affecting the accuracy of NIRS predictions, and (v) efficient use of spectral libraries are required to enhance the acceptability of NIRS as a soil analysis technique and to make it more user-friendly. Standardized guidelines are proposed for the assessment of the accuracy of NIRS predictions of soil attributes.Key words: Near infrared reflectance spectroscopy, soil analysis, calibration


2020 ◽  
Vol 10 (17) ◽  
pp. 6035
Author(s):  
Emmanuel Oladeji Alamu ◽  
Michael Adesokan ◽  
Asrat Asfaw ◽  
Busie Maziya-Dixon

High throughput techniques for phenotyping quality traits in root and tuber crops are useful in breeding programs where thousands of genotypes are screened at the early stages. This study assessed the effects of sample preparation on the prediction accuracies of dry matter, protein, and starch content in fresh yam using Near-Infrared Reflectance Spectroscopy (NIRS). Fresh tubers of Dioscorearotundata (D. rotundata) and Dioscoreaalata (D. alata) were prepared using different sampling techniques—blending, chopping, and grating. Spectra of each sample and reference data were used to develop calibration models using Modified Partial Least Square (MPLS). The performance of the model developed from the blended yam samples was tested using a new set of yam samples (N = 50) by comparing their wet laboratory results with the predicted values from NIRS. Blended samples had the highest coefficient of prediction (R2pre) for dry matter (0.95) and starch (0.83), though very low for protein (0.26), while grated samples had the lowest R2pre of 0.87 for dry matter and 0.50 for starch. Results showed that blended samples gave a better prediction compared with other methods. The feasibility of NIRS for the prediction of dry matter and starch content in fresh yam was highlighted.


2021 ◽  
pp. 096703352110075
Author(s):  
Adou Emmanuel Ehounou ◽  
Denis Cornet ◽  
Lucienne Desfontaines ◽  
Carine Marie-Magdeleine ◽  
Erick Maledon ◽  
...  

Despite the importance of yam ( Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.


Sign in / Sign up

Export Citation Format

Share Document