scholarly journals Impact of mesenchymal stem cells derived conditioned media on neural progenitor cells

2021 ◽  
Vol 40 (06) ◽  
pp. 551-559
Author(s):  
Filip Humenik ◽  
Sonja Jego ◽  
Lubica Hornakova ◽  
Marcela Maloveska ◽  
Alexandra Valencakova-Agyagosova ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takamasa Hirai ◽  
Ken Kono ◽  
Rumi Sawada ◽  
Takuya Kuroda ◽  
Satoshi Yasuda ◽  
...  

AbstractHighly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.


Organogenesis ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 365-377 ◽  
Author(s):  
Leonardo D’Aiuto ◽  
Yun Zhi ◽  
Dhanjit Kumar Das ◽  
Madeleine R Wilcox ◽  
Jon W Johnson ◽  
...  

2019 ◽  
Vol 76 (18) ◽  
pp. 3553-3570 ◽  
Author(s):  
Natanael Zarco ◽  
Emily Norton ◽  
Alfredo Quiñones-Hinojosa ◽  
Hugo Guerrero-Cázares

Author(s):  
Nicholas D Allen

The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.


Genomics Data ◽  
2015 ◽  
Vol 3 ◽  
pp. 24-27 ◽  
Author(s):  
Shing Fai Chan ◽  
Xiayu Huang ◽  
Scott R. McKercher ◽  
Rameez Zaidi ◽  
Shu-ichi Okamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document