neural lineage
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 72)

H-INDEX

28
(FIVE YEARS 5)

Human Cell ◽  
2022 ◽  
Author(s):  
Shohei Takaoka ◽  
Fumihiko Uchida ◽  
Hiroshi Ishikawa ◽  
Junko Toyomura ◽  
Akihiro Ohyama ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Jenny A. Klein ◽  
Zhen Li ◽  
Sanjeev Rampam ◽  
Jack Cardini ◽  
Amara Ayoub ◽  
...  

The intellectual disability found in people with Down syndrome is associated with numerous changes in early brain development, including the proliferation and differentiation of neural progenitor cells (NPCs) and the formation and maintenance of myelin in the brain. To study how early neural precursors are affected by trisomy 21, we differentiated two isogenic lines of induced pluripotent stem cells derived from people with Down syndrome into brain-like and spinal cord-like NPCs and promoted a transition towards oligodendroglial fate by activating the Sonic hedgehog (SHH) pathway. In the spinal cord-like trisomic cells, we found no difference in expression of OLIG2 or NKX2.2, two transcription factors essential for commitment to the oligodendrocyte lineage. However, in the brain-like trisomic NPCs, OLIG2 is significantly upregulated and is associated with reduced expression of NKX2.2. We found that this gene dysregulation and block in NPC transition can be normalized by increasing the concentration of a SHH pathway agonist (SAG) during differentiation. These results underscore the importance of regional and cell type differences in gene expression in Down syndrome and demonstrate that modulation of SHH signaling in trisomic cells can rescue an early perturbed step in neural lineage specification.


Author(s):  
Elena Senís ◽  
Miriam Esgleas ◽  
Sonia Najas ◽  
Verónica Jiménez-Sábado ◽  
Camilla Bertani ◽  
...  

Long noncoding RNAs (lncRNAs) are regulatory molecules which have been traditionally considered as “non-coding”. Strikingly, recent evidence has demonstrated that many non-coding regions, including lncRNAs, do in fact contain small-open reading frames that code for small proteins that have been called microproteins. Only a few of them have been characterized so far, but they display key functions in a wide variety of cellular processes. Here, we show that TUNAR lncRNA encodes an evolutionarily conserved microprotein expressed in the nervous system that we have named pTUNAR. pTUNAR deficiency in mouse embryonic stem cells improves their differentiation potential towards neural lineage both in vitro and in vivo. Conversely, pTUNAR overexpression impairs neuronal differentiation by reduced neurite formation in different model systems. At the subcellular level, pTUNAR is a transmembrane protein that localizes in the endoplasmic reticulum and interacts with the calcium transporter SERCA2. pTUNAR overexpression reduces cytoplasmatic calcium, consistent with a possible role of pTUNAR as an activator of SERCA2. Altogether, our results suggest that our newly discovered microprotein has an important role in neural differentiation and neurite formation through the regulation of intracellular calcium. From a more general point of view, our results provide a proof of concept of the role of lncRNAs-encoded microproteins in neural differentiation.


Author(s):  
Ryan J. Farr ◽  
Nathan Godde ◽  
Christopher Cowled ◽  
Vinod Sundaramoorthy ◽  
Diane Green ◽  
...  

Despite being vaccine preventable, rabies (lyssavirus) still has a significant impact on global mortality, disproportionally affecting children under 15 years of age. This neurotropic virus is deft at avoiding the immune system while travelling through neurons to the brain. Until recently, research efforts into the role of non-coding RNAs in rabies pathogenicity and detection have been hampered by a lack of human in vitro neuronal models. Here, we utilized our previously described human stem cell-derived neural model to investigate the effect of lyssavirus infection on microRNA (miRNA) expression in human neural cells and their secreted exosomes. Conventional differential expression analysis identified 25 cellular and 16 exosomal miRNAs that were significantly altered (FDR adjusted P-value <0.05) in response to different lyssavirus strains. Supervised machine learning algorithms determined 6 cellular miRNAs (miR-99b-5p, miR-346, miR-5701, miR-138-2-3p, miR-651-5p, and miR-7977) were indicative of lyssavirus infection (100% accuracy), with the first four miRNAs having previously established roles in neuronal function, or panic and impulsivity-related behaviors. Another 4-miRNA signatures in exosomes (miR-25-3p, miR-26b-5p, miR-218-5p, miR-598-3p) can independently predict lyssavirus infected cells with >99% accuracy. Identification of these robust lyssavirus miRNA signatures offers further insight into neural lineage responses to infection and provides a foundation for utilizing exosome miRNAs in the development of next-generation molecular diagnostics for rabies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Saba Rezaei-Lotfi ◽  
Filip Vujovic ◽  
Mary Simonian ◽  
Neil Hunter ◽  
Ramin M. Farahani

Abstract Background Transdifferentiation describes transformation in vivo of specialized cells from one lineage into another. While there is extensive literature on forced induction of lineage reprogramming in vitro, endogenous mechanisms that govern transdifferentiation remain largely unknown. The observation that human microvascular pericytes transdifferentiate into neurons provided an opportunity to explore the endogenous molecular basis for lineage reprogramming. Results We show that abrupt destabilization of the higher-order chromatin topology that chaperones lineage memory of pericytes is driven by transient global transcriptional arrest. This leads within minutes to localized decompression of the repressed competing higher-order chromatin topology and expression of pro-neural genes. Transition to neural lineage is completed by probabilistic induction of R-loops in key myogenic loci upon re-initiation of RNA polymerase activity, leading to depletion of the myogenic transcriptome and emergence of the neurogenic transcriptome. Conclusions These findings suggest that the global transcriptional landscape not only shapes the functional cellular identity of pericytes, but also stabilizes lineage memory by silencing the competing neural program within a repressed chromatin state.


2021 ◽  
Author(s):  
Jessica Kim ◽  
Masafumi Muraoka ◽  
Rieko Ajima ◽  
Hajime Okada ◽  
Atsushi Toyoda ◽  
...  

The evolutionarily conserved RNA helicase DDX6 is a central player of post-transcriptional regulation, but its role during embryogenesis remains elusive. We here demonstrated that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 KO mouse embryos and in vitro epiblast-like cell (EpiLC) induction system. Our study unveiled a great impact of DDX6-mediated RNA regulation on signaling pathways. Deletion of Ddx6 caused the aberrant transcriptional upregulation of the negative regulators of BMP signaling, which accompanied with enhanced Nodal signaling. Ddx6 / pluripotent cells acquired higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal expression in the primitive streak likely promoted endoderm cell fate specification while inhibiting mesoderm development. We further clarified the mechanism how DDX6 regulates cell fate determination of pluripotent cells by genetically dissecting major DDX6 pathways: processing body (P-body) formation, translational repression, mRNA decay, and miRNA-mediated silencing. P-body-related functions were dispensable, but the miRNA pathway was essential for the DDX6 function. DDX6 may prevent aberrant transcriptional upregulation of the negative regulators of BMP signaling by repressing translation of certain transcription factors through the interaction with miRNA-induced silencing complexes (miRISCs). Overall, this delineates how DDX6 affects development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.


2021 ◽  
Author(s):  
Gerald Crabtree ◽  
Esther Son ◽  
Andrey Krokhotin ◽  
Sai Gourisankar ◽  
Chiung-Ying Chang

Abstract Recent unbiased exome and whole-genome sequencing studies have identified ARID1B (originally BAF250b) as the most frequently mutated gene in human de novo neurodevelopmental disorders and a high confidence autism gene. ARID1B is a subunit of the multimeric SWI/SNF or Brg/Brahma-Associated Factor (BAF) ATP-dependent chromatin remodeling complex. Studies of Arid1b+/- mice as well as other BAF subunit mutants have found defects in neural progenitor proliferation and activity-dependent neuronal dendritogenesis; however, to date, the molecular impact of ARID1B mutations on the human neural lineage has not been investigated. Remarkably, ARID1B is required for expression of HOX genes, including anterior HOX genes necessary for brain development. Despite the high homology with ARID1A and the fact that ARID1A is expressed at about 3-fold higher levels, it is unable to compensate for heterozygous loss of ARID1B. These changes in gene expression were paralleled by dosage-sensitive altered deposition of histone H3 lysine-27 trimethylation (H3K27me3) and histone H2A lysine-119 ubiquitination (H2AK119ub) indicating that an evolutionarily conserved pathway of HOX gene regulation underlies the neurodevelopmental defects accompanying ARID1B haploinsufficiency. Using FIRE-Cas9, we show that the unmutated ARID1B allele can be activated to near normal and potentially therapeutic levels.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dilara Sen ◽  
Alexis Voulgaropoulos ◽  
Albert J. Keung

Abstract Background Human cerebral organoids (hCO) are attractive systems due to their ability to model important brain regions and transcriptomics of early in vivo brain development. To date, they have been used to understand the effects of genetics and soluble factors on neurodevelopment. Interestingly, one of the main advantages of hCOs are that they provide three dimensionality that better mimics the in vivo environment; yet, despite this central feature it remains unclear how spatial and mechanical properties regulate hCO and neurodevelopment. While biophysical factors such as shape and mechanical forces are known to play crucial roles in stem cell differentiation, embryogenesis and neurodevelopment, much of this work investigated two dimensional systems or relied on correlative observations of native developing tissues in three dimensions. Using hCOs to establish links between spatial factors and neurodevelopment will require the use of new approaches and could reveal fundamental principles of brain organogenesis as well as improve hCOs as an experimental model. Results Here, we investigated the effects of early geometric confinements on transcriptomic changes during hCO differentiation. Using a custom and tunable agarose microwell platform we generated embryoid bodies (EB) of diverse shapes mimicking several structures from embryogenesis and neurodevelopment and then further differentiated those EBs to whole brain hCOs. Our results showed that the microwells did not have negative gross impacts on the ability of the hCOs to differentiate towards neural fates, and there were clear shape dependent effects on neural lineage specification. In particular we observed that non-spherical shapes showed signs of altered neurodevelopmental kinetics and favored the development of medial ganglionic eminence-associated brain regions and cell types over cortical regions. Transcriptomic analysis suggests these mechanotransducive effects may be mediated by integrin and Wnt signaling. Conclusions The findings presented here suggest a role for spatial factors in brain region specification during hCO development. Understanding these spatial patterning factors will not only improve understanding of in vivo development and differentiation, but also provide important handles with which to advance and improve control over human model systems for in vitro applications.


2021 ◽  
Author(s):  
Yao Kun ◽  
Duan Zejun ◽  
Feng Jing ◽  
Qi Xueling

Abstract Background: DICER1-associated central nervous system sarcoma (DCS) without evidence of other cancer-related syndromes is rare. Though the morphology of DCS was highly variable, the immunophenotype was predominant myogenic phenotype. Other lineage markers were consistently negative. Herein, our objective was to identify the clinical, pathogenesis, treatment and driver mutation of DCS with neurogenic differentiation through whole-exome sequencing (WES) and RNA sequencing (RNA-seq) of both leukocytes and tumor tissues.Case presentation: We describe here the case of a 8-year-old female patient presented with a 8-day history of headache, nausea and vomiting. Magnetic resonance imaging (MRI) revealed a heterogeneous mass in left parietal lobe. The patient underwent the craniotomy via left parietal approach. Histologically, the tumor predominately showed fibrosarcoma-like spindle cells with obvious cytoplasmic eosinophilic globules. Immunohistochemically, the tumor stained positively for NF, Syn, MAP-2, Desmin and DICER1. WES of tumor tissues detected the DICER1 somatic mutation. This case harbored tumor-driving mutations mainly including AR, AXL and ETV5 mutations, proved sarcoma-associated genes in other kind of sarcomas growth, in addition to TP53 and RAF1 mutations which were common found in DCS. All theses findings indicated the diagnosis of DCS with neurogenic differentiation. This neural lineage differentiation was further confirmed by the result of Gene Ontology (GO) analysis. The patient subsequently received high dose radiotherapy (60Gy) and chemotherapy. The MRI showed no evidence of tumor recurrence at the 12 months’ follow-up.Conclusions: This unusual case of DCS with neuronal differentiation is an important addition to the immuno-phenotypic spectrum of DCS. The prognosis is poor for DCS, and total tumor resection and high dose radiotherapy may assist in prolonging survival. Further research is needed to better understand the behavior and treatment of this rare DCS with neuronal differentiation.


Author(s):  
Yuki Hattori

AbstractMicroglia are the resident immune cells of the central nervous system. Microglial progenitors are generated in the yolk sac during the early embryonic stage. Once microglia enter the brain primordium, these cells colonize the structure through migration and proliferation during brain development. Microglia account for a minor population among the total cells that constitute the developing cortex, but they can associate with many surrounding neural lineage cells by extending their filopodia and through their broad migration capacity. Of note, microglia change their distribution in a stage-dependent manner in the developing brain: microglia are homogenously distributed in the pallium in the early and late embryonic stages, whereas these cells are transiently absent from the cortical plate (CP) from embryonic day (E) 15 to E16 and colonize the ventricular zone (VZ), subventricular zone (SVZ), and intermediate zone (IZ). Previous studies have reported that microglia positioned in the VZ/SVZ/IZ play multiple roles in neural lineage cells, such as regulating neurogenesis, cell survival and neuronal circuit formation. In addition to microglial functions in the zones in which microglia are replenished, these cells indirectly contribute to the proper maturation of post-migratory neurons by exiting the CP during the mid-embryonic stage. Overall, microglial time-dependent distributional changes are necessary to provide particular functions that are required in specific regions. This review summarizes recent advances in the understanding of microglial colonization and multifaceted functions in the developing brain, especially focusing on the embryonic stage, and discuss the molecular mechanisms underlying microglial behaviors.


Sign in / Sign up

Export Citation Format

Share Document