conditioned media
Recently Published Documents


TOTAL DOCUMENTS

1026
(FIVE YEARS 287)

H-INDEX

58
(FIVE YEARS 10)

Author(s):  
Shahryar K. Kavoussi ◽  
Shu-Hung Chen ◽  
John David Wininger ◽  
Arnav Lal ◽  
William E. Roudebush ◽  
...  

Abstract Purpose The aim of this study was to determine if pregnancy-associated plasma protein-A (PAPP-A), typically measured in maternal serum and a potential predictor of adverse maternal and fetal outcomes such as spontaneous miscarriage, pre-eclampsia, and stillbirth, is expressed in blastocoel fluid–conditioned media (BFCM) at the embryonic blastocyst stage. Design This is an in vitro study. Methods BFCM samples from trophectoderm-tested euploid blastocysts (n = 80) from in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) patients were analyzed for PAPP-A mRNA. BFCM was obtained from blastocyst stage embryos in 20 uL drops. Blastocysts underwent trophectoderm biopsy for preimplantation genetic testing for aneuploidy prior to blastocyst vitrification and BFCM collection for snap freezing. cfDNA was synthesized using BFCM collected from 80 individual euploid blastocysts. Next, real-time qPCR was performed to detect expression of PAPP-A with GAPDH for normalization of expression in each sample. Results PAPP-A mRNA was detected in 45 of 80 BFCM samples (56.3%), with varying levels of expression across samples. Conclusion Our study demonstrates the expression of PAPP-A in BFCM. To our knowledge, this is the first study to report detection of PAPP-A mRNA in BFCM. Further studies are required and underway to investigate a greater number of BFCM samples as well as the possible correlation of PAPP-A expression with pregnancy outcomes of transferred euploid blastocysts. If found to predict IVF and obstetric outcomes, PAPP-A may provide additional information along with embryonic euploidy for the selection of the optimal blastocyst for embryo transfer.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262223
Author(s):  
Min-Jeong Kim ◽  
Ki-Back Chu ◽  
Hae-Ahm Lee ◽  
Fu-Shi Quan ◽  
Hyun-Hee Kong ◽  
...  

Contact lens usage has contributed to increased incidence rates of Acanthamoeba keratitis (AK), a serious corneal infection that can lead to blindness. Since symptoms associated with AK closely resemble those incurred by bacterial or fungal keratitis, developing a diagnostic method enabling rapid detection with a high degree of Acanthamoeba-specificity would be beneficial. Here, we produced a polyclonal antibody targeting the carboxylesterase (CE) superfamily protein secreted by the pathogenic Acanthamoeba and evaluated its diagnostic potential. Western blot analysis revealed that the CE antibody specifically interacts with the cell lysates and conditioned media of pathogenic Acanthamoeba, which were not observed from the cell lysates and conditioned media of human corneal epithelial (HCE) cells, Fusarium solani, Staphylococcus aureus, and Pseudomonas aeruginosa. High titers of A. castellanii-specific antibody production were confirmed sera of immunized mice via ELISA, and these antibodies were capable of detecting A. castellanii from the cell lysates and their conditioned media. The specificity of the CE antibody was further confirmed on A. castellanii trophozoites and cysts co-cultured with HCE cells, F. solani, S. aureus, and P. aeruginosa using immunocytochemistry. Additionally, the CE antibody produced in this study successfully interacted with 7 different Acanthamoeba species. Our findings demonstrate that the polyclonal CE antibody specifically detects multiple species belong to the genus Acanthamoeba, thus highlighting its potential as AK diagnostic tool.


Author(s):  
Sara Svensson ◽  
Michael Palmer ◽  
Johan Svensson ◽  
Anna Johansson ◽  
Håkan Engqvist ◽  
...  

AbstractPyrophosphate-containing calcium phosphate implants promote osteoinduction and bone regeneration. The role of pyrophosphate for inflammatory cell-mesenchymal stem cell (MSC) cross-talk during osteogenesis is not known. In the present work, the effects of lipopolysaccharide (LPS) and pyrophosphate (PPi) on primary human monocytes and on osteogenic gene expression in human adipose-derived MSCs were evaluated in vitro, using conditioned media transfer as well as direct effect systems. Direct exposure to pyrophosphate increased nonadherent monocyte survival (by 120% without LPS and 235% with LPS) and MSC viability (LDH) (by 16–19% with and without LPS). Conditioned media from LPS-primed monocytes significantly upregulated osteogenic genes (ALP and RUNX2) and downregulated adipogenic (PPAR-γ) and chondrogenic (SOX9) genes in recipient MSCs. Moreover, the inclusion of PPi (250 μM) resulted in a 1.2- to 2-fold significant downregulation of SOX9 in the recipient MSCs, irrespective of LPS stimulation or culture media type. These results indicate that conditioned media from LPS-stimulated inflammatory monocytes potentiates the early MSCs commitment towards the osteogenic lineage and that direct pyrophosphate exposure to MSCs can promote their viability and reduce their chondrogenic gene expression. These results are the first to show that pyrophosphate can act as a survival factor for both human MSCs and primary monocytes and can influence the early MSC gene expression.


2021 ◽  
Vol 2 ◽  
Author(s):  
Abdulrahman Alzahrani ◽  
Jameel Hakeem ◽  
Michael Biddle ◽  
Fahad Alhadian ◽  
Aamir Hussain ◽  
...  

The mechanisms underlying corticosteroid insensitivity in severe asthma have not been elucidated although some indirect clinical evidence points toward a role of mast cells. Here, we tested the hypothesis that mast cells can drive corticosteroid insensitivity in airway smooth muscle cells, a key player in asthma pathogenesis. Conditioned media from resting or FcεR1-activated human lung mast cells were incubated with serum-deprived ASM cells (1:4 dilution, 24 h) to determine their impact on the anti-inflammatory action of fluticasone on ASM cell chemokine expression induced by TNFα (10 ng/ml). Conditioned media from FcεR1-activated mast cells (but not that from non-activated mast cells or control media) significantly reduced the ability of 100 nM fluticasone to suppress ASM TNFα-dependent CCL5 and CXCL10 production at both mRNA and protein levels. In contrast, fluticasone inhibition of CXCL-8 production by TNFα was still preserved in the presence of activated mast cell conditioned media. Transcriptomic analysis validated by individual qPCR assays revealed that activated mast cell conditioned media dramatically reduced the number of anti-inflammatory genes induced by fluticasone in ASM cells. Our study demonstrates for the first time that conditioned media from FcεR1-activated mast cells blunt the anti-inflammatory action of corticosteroids in ASM cells by altering their transactivation properties. Because infiltration of mast cells within the ASM bundles is a defining feature of asthma, mast cell-derived mediators may contribute to the glucocorticoid insensitivity present in severe asthma.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Jorge G. García ◽  
Carlos de Miguel ◽  
Fermín I. Milagro ◽  
Guillermo Zalba ◽  
Eduardo Ansorena

Obesity is a global health issue associated with the development of metabolic syndrome, which correlates with insulin resistance, altered lipid homeostasis, and other pathologies. One of the mechanisms involved in the development of these pathologies is the increased production of reactive oxygen species (ROS). One of the main producers of ROS is the family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, among which NOX5 is the most recently discovered member. The aim of the present work is to describe the effect of endothelial NOX5 expression on neighboring adipose tissue in obesity conditions by using two systems. An in vivo model based on NOX5 conditional knock-in mice fed with a high-fat diet and an in vitro model developed with 3T3-L1 adipocytes cultured with conditioned media of endothelial NOX5-expressing bEnd.3 cells, previously treated with glucose and palmitic acid. Endothelial NOX5 expression promoted the expression and activation of specific markers of thermogenesis and lipolysis in the mesenteric and epididymal fat of those mice fed with a high-fat diet. Additionally, the activation of these processes was derived from an increase in IL-6 production as a result of NOX5 activity. Accordingly, 3T3-L1 adipocytes treated with conditioned media of endothelial NOX5-expressing cells, presented higher expression of thermogenic and lipolytic genes. Moreover, endothelial NOX5-expressing bEnd.3 cells previously treated with glucose and palmitic acid also showed interleukin (IL-6) production. Finally, it seems that the increase in IL-6 stimulated the activation of markers of thermogenesis and lipolysis through phosphorylation of STAT3 and AMPK, respectively. In conclusion, in response to obesogenic conditions, endothelial NOX5 activity could promote thermogenesis and lipolysis in the adipose tissue by regulating IL-6 production.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 64
Author(s):  
Eimear Mylod ◽  
Fiona O’Connell ◽  
Noel E. Donlon ◽  
Christine Butler ◽  
John V. Reynolds ◽  
...  

Oesophagogastric adenocarcinomas (OAC) are obesity-associated malignancies, underpinned by severe immune dysregulation. We have previously shown that natural killer (NK) cells preferentially migrate to OAC omentum, where they undergo phenotypic and functional alterations and apoptosis. Furthermore, we have identified the CX3CR1:fractalkine (CX3CL1) pathway as pivotal in their recruitment to omentum. Here, we elucidate whether exposure to the soluble microenvironment of OAC omentum, and in particular fractalkine and IL-15 affects NK cell homing capacity towards oesophageal tumour. Our data uncover diminished NK cell migration towards OAC tumour tissue conditioned media (TCM) following exposure to omental adipose tissue conditioned media (ACM) and reveal that this migration can be rescued with CX3CR1 antagonist E6130. Furthermore, we show that fractalkine has opposing effects on NK cell migration towards TCM, when used alone or in combination with IL-15 and uncover its inhibitory effects on IL-15-mediated stimulation of death receptor ligand expression. Interestingly, treatment with fractalkine and/or IL-15 do not significantly affect NK cell adhesion to MAdCAM-1, despite changes they elicit to the expression of integrin α4β7. This study provides further evidence that CX3CR1 antagonism has therapeutic utility in rescuing NK cells from the deleterious effects of the omentum and fractalkine in OAC, thus limiting their dysfunction.


2021 ◽  
Vol 12 (6) ◽  
pp. 1187
Author(s):  
Retno Wahyu Nurhayati ◽  
Dinda Shezaria Hardy Lubis ◽  
Gita Pratama ◽  
Elizabeth Agustina ◽  
Zakiyatul Khoiriyah ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13300
Author(s):  
Fabio Bertani ◽  
Dalila Di Francesco ◽  
Maria Dolores Corrado ◽  
Maria Talmon ◽  
Luigia Grazia Fresu ◽  
...  

Cardiovascular diseases (CVDs), mainly ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and major contributors to disability worldwide. Despite their heterogeneity, almost all CVDs share a common feature: the endothelial dysfunction. This is defined as a loss of functionality in terms of anti-inflammatory, anti-thrombotic and vasodilatory abilities of endothelial cells (ECs). Endothelial function is greatly ensured by the mechanotransduction of shear forces, namely, endothelial wall shear stress (WSS). Low WSS is associated with endothelial dysfunction, representing the primary cause of atherosclerotic plaque formation and an important factor in plaque progression and remodeling. In this work, the role of factors released by ECs subjected to different magnitudes of shear stress driving the functionality of downstream endothelium has been evaluated. By means of a microfluidic system, HUVEC monolayers have been subjected to shear stress and the conditioned media collected to be used for the subsequent static culture. The results demonstrate that conditioned media retrieved from low shear stress experimental conditions (LSS-CM) induce the downregulation of endothelial nitric oxide synthase (eNOS) expression while upregulating peripheral blood mononuclear cell (PBMC) adhesion by means of higher levels of adhesion molecules such as E-selectin and ICAM-1. Moreover, LSS-CM demonstrated a significant angiogenic ability comparable to the inflammatory control media (TNFα-CM); thus, it is likely related to tissue suffering. We can therefore suggest that ECs stimulated at low shear stress (LSS) magnitudes are possibly involved in the paracrine induction of peripheral endothelial dysfunction, opening interesting insights into the pathogenetic mechanisms of coronary microvascular dysfunction.


2021 ◽  
pp. 108907
Author(s):  
Renata Ruoco Loureiro ◽  
Priscila Cardoso Cristovam ◽  
Larissa Rigobeli da Rosa ◽  
Lucimeire Nova ◽  
Gustavo Gasparetto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document