On The Critical Lattices of Arbitrary Point Sets

1949 ◽  
Vol 1 (1) ◽  
pp. 78-87 ◽  
Author(s):  
K. Mahler

In this note, I shall establish necessary and sufficient conditions for the existence of critical lattices of an arbitrary point set, and I shall construct a non-trivial example of a point set without any critical lattice. In a previous paper, I proved that every star body of the finite type possesses at least one critical lattice.

1998 ◽  
Vol 18 (5) ◽  
pp. 1097-1114 ◽  
Author(s):  
DMITRY DOLGOPYAT

We provide necessary and sufficient conditions for a suspension flow, over a subshift of finite type, to mix faster than any power of time. Then we show that these conditions are satisfied if the flow has two periodic orbits such that the ratio of the periods cannot be well approximated by rationals.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Thananya Kaewnoi ◽  
Ronnason Chinram ◽  
Montakarn Petapirak

Let X be a nonempty set and ρ be an equivalence relation on X . For a nonempty subset S of X , we denote the semigroup of transformations restricted by an equivalence relation ρ fixing S pointwise by E F S X , ρ . In this paper, magnifying elements in E F S X , ρ will be investigated. Moreover, we will give the necessary and sufficient conditions for elements in E F S X , ρ to be right or left magnifying elements.


2005 ◽  
Vol 15 (04) ◽  
pp. 403-419 ◽  
Author(s):  
ERIK D. DEMAINE ◽  
JEFF ERICKSON ◽  
FERRAN HURTADO ◽  
JOHN IACONO ◽  
STEFAN LANGERMAN ◽  
...  

We consider the separability of two point sets inside a polygon by means of chords or geodesic lines. Specifically, given a set of red points and a set of blue points in the interior of a polygon, we provide necessary and sufficient conditions for the existence of a chord and for the existence of a geodesic path that separate the two sets; when they exist we also derive efficient algorithms for their obtention. We also study the separation of the two sets using the minimum number of pairwise non-crossing chords.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


Sign in / Sign up

Export Citation Format

Share Document