Some Characterizations of Generalized Manifolds With Boundaries

1952 ◽  
Vol 4 ◽  
pp. 329-342 ◽  
Author(s):  
Paul A. White

In R. L. Wilder's book [2] the open and closed generalized manifolds are extensively studied. However, no study is made of the generalized manifold with boundary nor is a definition of such a space given except in the case of the generalized closed n-cell. A definition of a generalized manifold with boundary was given by the author in his paper [1]. Before undertaking the study of further properties of these manifolds it seems appropriate to characterize the manifolds with boundary in terms of the open and closed manifolds of Wilder. It is to that purpose that this paper is directed and in particular the generalized closed n-cell of Wilder is characterized as a special manifold with boundary.

2021 ◽  
Author(s):  
Yu-Lin Chou

We show as a main message that there is a simple dimension-preserving way to openly and densely embed every topological manifold into a compact ``nonstandard'' topological manifold with boundary.This class of ``nonstandard'' topological manifolds with boundary contains the usual topological manifolds with boundary.In particular,the Alexandroff one-point compactification of every given topological $n$-manifold is a ``nonstandard'' topological $n$-manifold with boundary.


2010 ◽  
Vol 53 (4) ◽  
pp. 674-683 ◽  
Author(s):  
Alexandru Kristály ◽  
Nikolaos S. Papageorgiou ◽  
Csaba Varga

AbstractWe study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the nonlinear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.


2005 ◽  
Vol 57 (2) ◽  
pp. 225-250 ◽  
Author(s):  
Bernhelm Booss-Bavnbek ◽  
Matthias Lesch ◽  
John Phillips

AbstractWe study the gap (= “projection norm” = “graph distance”) topology of the space of all (not necessarily bounded) self-adjoint Fredholm operators in a separable Hilbert space by the Cayley transformand direct methods. In particular, we show the surprising result that this space is connected in contrast to the bounded case. Moreover, we present a rigorous definition of spectral flow of a path of such operators (actually alternative but mutually equivalent definitions) and prove the homotopy invariance. As an example, we discuss operator curves on manifolds with boundary.


2020 ◽  
Vol 30 (5) ◽  
pp. 1183-1223
Author(s):  
Simone Cecchini

AbstractWe develop index theory on compact Riemannian spin manifolds with boundary in the case when the topological information is encoded by bundles which are supported away from the boundary. As a first application, we establish a “long neck principle” for a compact Riemannian spin n-manifold with boundary X, stating that if $${{\,\mathrm{scal}\,}}(X)\ge n(n-1)$$ scal ( X ) ≥ n ( n - 1 ) and there is a nonzero degree map into the sphere $$f:X\rightarrow S^n$$ f : X → S n which is strictly area decreasing, then the distance between the support of $$\text {d}f$$ d f and the boundary of X is at most $$\pi /n$$ π / n . This answers, in the spin setting and for strictly area decreasing maps, a question recently asked by Gromov. As a second application, we consider a Riemannian manifold X obtained by removing k pairwise disjoint embedded n-balls from a closed spin n-manifold Y. We show that if $${{\,\mathrm{scal}\,}}(X)>\sigma >0$$ scal ( X ) > σ > 0 and Y satisfies a certain condition expressed in terms of higher index theory, then the radius of a geodesic collar neighborhood of $$\partial X$$ ∂ X is at most $$\pi \sqrt{(n-1)/(n\sigma )}$$ π ( n - 1 ) / ( n σ ) . Finally, we consider the case of a Riemannian n-manifold V diffeomorphic to $$N\times [-1,1]$$ N × [ - 1 , 1 ] , with N a closed spin manifold with nonvanishing Rosenebrg index. In this case, we show that if $${{\,\mathrm{scal}\,}}(V)\ge \sigma >0$$ scal ( V ) ≥ σ > 0 , then the distance between the boundary components of V is at most $$2\pi \sqrt{(n-1)/(n\sigma )}$$ 2 π ( n - 1 ) / ( n σ ) . This last constant is sharp by an argument due to Gromov.


1998 ◽  
Vol 58 (2) ◽  
pp. 233-237
Author(s):  
Gabriela Putinar

We use a Betti number estimate of Freedman-Hain-Teichner to show that the maximal torsion-free nilpotent quotient of the fundamental group of a 3-manifold with boundary is either Z or Z ⊕ Z. In particular we reobtain the Evans-Moser classification of 3-manifolds with boundary which have nilpotent fundamental groups.


Author(s):  
Loring W. Tu

This chapter illustrates integration of equivariant forms. An equivariant differential form is an element of the Cartan model. For a circle action on a manifold M, it is a polynomial in u with coefficients that are invariant forms on M. Such a form can be integrated by integrating the coefficients. This can be called equivariant integration. The chapter shows that under equivariant integration, Stokes's theorem still holds. Everything done so far in this book concerning a Lie group action on a manifold can be generalized to a manifold with boundary. An important fact concerning manifolds with boundary is that a diffeomorphism of a manifold with boundary takes interior points to interior points and boundary points to boundary points.


2018 ◽  
Vol 115 (43) ◽  
pp. 10861-10868 ◽  
Author(s):  
Nickolas A. Castro ◽  
David T. Gay ◽  
Juanita Pinzón-Caicedo

Given a handle decomposition of a 4-manifold with boundary and an open book decomposition of the boundary, we show how to produce a trisection diagram of a trisection of the 4-manifold inducing the given open book. We do this by making the original proof of the existence of relative trisections more explicit in terms of handles. Furthermore, we extend this existence result to the case of 4-manifolds with multiple boundary components and show how trisected 4-manifolds with multiple boundary components glue together.


2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Rossella Bartolo ◽  
Anna Germinario ◽  
Miguel Sánchez

AbstractA new result about the existence of a closed geodesic on a Riemannian manifold with boundary is given. A detailed comparison with previous results is carried out.


2011 ◽  
Vol 13 ◽  
pp. 71-79
Author(s):  
Gonzalo García ◽  
Jhovanny Muñoz

Let (Mn, g) be an n—dimensional compact Riemannian manifold with boundary with n > 2. In this paper we study the uniqueness of metrics in the conformai class of the metric g having the same scalar curvature in M, dM, and the same mean curvature on the boundary of M, dM. We prove the equivalence of some uniqueness results replacing the hypothesis on the first Neumann eigenvalue of a linear elliptic problem associated to the problem of conformai deformations of metrics for one about the first Dirichlet eigenvalue of that problem. Keywords: Conformal metrics, scalar curvature, mean curvature.


2008 ◽  
Vol 103 (2) ◽  
pp. 243 ◽  
Author(s):  
Anders Gaarde ◽  
Gerd Grubb

On a compact manifold with boundary, consider the realization $B$ of an elliptic, possibly pseudodifferential, boundary value problem having a spectral cut (a ray free of eigenvalues), say $\mathsf{R}_{-}$. In the first part of the paper we define and discuss in detail the operator $\log B$; its residue (generalizing the Wodzicki residue) is essentially proportional to the zeta function value at zero, $\zeta (B,0)$, and it enters in an important way in studies of composed zeta functions $\zeta (A,B,s)= {\operatorname {Tr}}(AB^{-s})$ (pursued elsewhere). There is a similar definition of the operator $\log_{\theta}B$, when the spectral cut is at a general angle $\theta$. When $B$ has spectral cuts at two angles $\theta <\varphi$, one can define the sectorial projection $\Pi_{\theta,\varphi} (B)$ whose range contains the generalized eigenspaces for eigenvalues with argument in $\left]\theta,\varphi \right[$; this is studied in the last part of the paper. The operator $\Pi_{\theta ,\varphi}(B)$ is shown to be proportional to the difference between $\log_{\theta}B$ and $\log_{\varphi} B$, having slightly better symbol properties than they have. We show by examples that it belongs to the Boutet de Monvel calculus in many special cases, but lies outside the calculus in general.


Sign in / Sign up

Export Citation Format

Share Document