On The Homology Theory Of Abelian Groups

1955 ◽  
Vol 7 ◽  
pp. 43-53 ◽  
Author(s):  
Samuel Eilenberg ◽  
Saunders Maclane

1. Introduction. In (1) we have introduced the notions of “construction” and “ generic acyclicity” in order to determine a homology theory for any class of multiplicative systems defined by identities. Among these classes the most interesting one is the class of associative and commutative systems II with a unit element (containing the class of abelian groups).

1961 ◽  
Vol 57 (2) ◽  
pp. 256-264 ◽  
Author(s):  
A. J. Douglas

Let G be a monoid; that is to say, G is a set such that with each pair σ, τ of elements of G there is associated a further element of G called the ‘product’ of σ and τ and written as στ. In addition it is required that multiplication be associative and that G shall have a unit element. The so-called ‘Homology Theory’† associates with each left G-module A and each integer n (n ≥ 0) an additive Abelian group Hn (G, A), called the nth homology group of G with coefficients in A. It is natural to ask what can be said about G if all the homology groups of G after the pth vanish identically in A. In this paper we give a complete answer to this question in the case when G is an Abelian group. Before describing the main result, however, it will be convenient to define what we shall call the homology type of G. We write Hn(G, A) ≡ 0 if Hn(G, A) = 0 for all left G-modules A.


1969 ◽  
Vol 9 (1-2) ◽  
pp. 143-152 ◽  
Author(s):  
R Padmanabhan

It is a fascinating problem in the axiomatics of any mathematical system to reduce the number of axioms, the number of variables used in each axiom, the length of the various identities, the number of concepts involved in the system etc. to a minimum. In other words, one is interested finding systems which are apparently ‘of different structures’ but which represent the same reality. Sheffer's stroke operation and. Byrne's brief formulations of Boolean algebras [1], Sholander's characterization of distributive lattices [7] and Sorkin's famous problem of characterizing lattices by means of two identities are all in the same spirit. In groups, when defined as usual, we demand a binary, unary and a nullary operation respectively, say, a, b →a·b; a→a−1; the existence of a unit element). However, as G. Rabinow first proved in [6], groups can be made as a subvariety of groupoids (mathematical systems with just one binary operation) with the operation * where a * b is the right division, ab−1. [8], M. Sholander proved the striking result that a mathematical system closed under a binary operation * and satisfying the identity S: x * ((x *z) * (y *z)) = y is an abelian group. Yet another identity, already known in the literature, characterizing abelian groups is HN: x * ((z * y) * (z * a;)) = y which is due to G. Higman and B. H. Neumann ([3], [4])*. As can be seen both the identities are of length six and both of them belong to the same ‘bracketting scheme’ or ‘bracket type’.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


Sign in / Sign up

Export Citation Format

Share Document