scholarly journals On Polynomial Extensions Of Rings

1956 ◽  
Vol 8 ◽  
pp. 1-2 ◽  
Author(s):  
Michio Yoshida

Let A be a commutative ring with unit element, and let A [x] be a ring of polynomials in an indeterminate x with coefficients in A. There are a number of well-known properties which A shares with A [x]. We shall state one of them in the following.

2019 ◽  
Vol 56 (2) ◽  
pp. 252-259
Author(s):  
Ebrahim Hashemi ◽  
Fatemeh Shokuhifar ◽  
Abdollah Alhevaz

Abstract The intersection of all maximal right ideals of a near-ring N is called the quasi-radical of N. In this paper, first we show that the quasi-radical of the zero-symmetric near-ring of polynomials R0[x] equals to the set of all nilpotent elements of R0[x], when R is a commutative ring with Nil (R)2 = 0. Then we show that the quasi-radical of R0[x] is a subset of the intersection of all maximal left ideals of R0[x]. Also, we give an example to show that for some commutative ring R the quasi-radical of R0[x] coincides with the intersection of all maximal left ideals of R0[x]. Moreover, we prove that the quasi-radical of R0[x] is the greatest quasi-regular (right) ideal of it.


1949 ◽  
Vol 1 (2) ◽  
pp. 125-152 ◽  
Author(s):  
Ernst Snapper

The purpose of this paper is to investigate completely indecomposable modules. A completely indecomposable module is an additive abelian group with a ring A as operator domain, where the following four conditions are satisfied.1-1. A is a commutative ring and has a unit element which is unit operator for .1-2. The submodules of satisfy the ascending chain condition. (Submodule will always mean invariant submodule.)


2019 ◽  
Vol 18 (01) ◽  
pp. 1950006 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
S. Anukumar Kathirvel

Let [Formula: see text] be a finite commutative ring with nonzero identity and [Formula: see text] be the set of all units of [Formula: see text] The graph [Formula: see text] is the simple undirected graph with vertex set [Formula: see text] in which two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if there exists a unit element [Formula: see text] in [Formula: see text] such that [Formula: see text] is a unit in [Formula: see text] In this paper, we obtain degree of all vertices in [Formula: see text] and in turn provide a necessary and sufficient condition for [Formula: see text] to be Eulerian. Also, we give a necessary and sufficient condition for the complement [Formula: see text] to be Eulerian, Hamiltonian and planar.


2014 ◽  
Vol 14 (03) ◽  
pp. 1550029
Author(s):  
Kelly Aceves ◽  
Manfred Dugas

Let F be a field and A a F-algebra. The F-linear transformation φ : A → A is a local multiplication map if for all a ∈ A there exists some ua ∈ A such that φ(a) = aua. Let [Formula: see text] denote the F-algebra of all local multiplication maps of A. If F is infinite and F[x] is the ring of polynomials over F, then it is known Lemma 1 in [J. Buckner and M. Dugas, Quasi-Localizations of ℤ, Israel J. Math.160 (2007) 349–370] that [Formula: see text]. The purpose of this paper is to study [Formula: see text] for finite fields F. It turns out that in this case [Formula: see text] is a "very" non-commutative ring of cardinality 2ℵ0 with many interesting properties.


1959 ◽  
Vol 14 ◽  
pp. 39-44 ◽  
Author(s):  
Tadasi Nakayama

Let F be a commutative ring with unit element 1. A ring R is called an algebraic ring over F by Drazin, in his recent paper [2], when R is an algebra over F and every element x of R satisfies an equation of lower monic form


1964 ◽  
Vol 6 (4) ◽  
pp. 196-197
Author(s):  
H. K. Farahat

In [2], Tosiro Tsuzzuku gave a proof of the following:THEOREM. Let G be a doubly transitive permutation group of degree n, let K be any commutative ring with unit element and let p be the natural representation of G by n × n permutation matrices with elements 0, 1 in K. Then ρ is decomposable as a matrix representation over K if and only ifn is an invertible element of K.For G the symmetric group this result follows from Theorems (2.1) and (4.12) of [1]. The proof given by Tsuzuku is unsatisfactory, although it is perfectly valid when K is a field. The purpose of this note is to give a correct proof of the general case.


1962 ◽  
Vol 58 (2) ◽  
pp. 206-208 ◽  
Author(s):  
W. H. Cockcroft

In what follows (E, p, B) will always denote a fibering in the sense of Serre, † with arc-wise connected base B, projection p:E → B, and fibre F = p−1(b), b ɛ B. Coefficients will always be taken in a commutative ring A with a unit element, and the cohomology will be singular (cubical), as in (3).


2015 ◽  
Vol 22 (spec01) ◽  
pp. 817-822 ◽  
Author(s):  
S. Akbari ◽  
E. Estaji ◽  
M.R. Khorsandi

Let R be a ring with non-zero identity. The unit graph G(R) of R is a graph with elements of R as its vertices and two distinct vertices a and b are adjacent if and only if a + b is a unit element of R. It was proved that if R is a commutative ring and 𝔪 is a maximal ideal of R such that |R/𝔪| = 2, then G(R) is a complete bipartite graph if and only if (R, 𝔪) is a local ring. In this paper we generalize this result by showing that if R is a ring (not necessarily commutative), then G(R) is a complete r-partite graph if and only if (R, 𝔪) is a local ring and r = |R/𝔪| = 2n for some n ∈ ℕ or R is a finite field. Among other results we show that if R is a left Artinian ring, 2 ∈ U(R) and the clique number of G(R) is finite, then R is a finite ring.


1983 ◽  
Vol 35 (4) ◽  
pp. 654-673 ◽  
Author(s):  
Isabelle Adjaero ◽  
Eugene Spiegel

Let R1 and R2 be commutative rings with identities, G a group and R1G and R2G the group ring of G over R1 and R2 respectively. The problem that motivates this work is to determine what relations exist between R1 and R2 if R1G and R2G are isomorphic. For example, is the coefficient ring R1 an invariant of R1G? This is not true in general as the following example shows. Let H be a group andIf R1 is a commutative ring with identity and R2 = R1H, thenbut R1 needn't be isomorphic to R2.Several authors have investigated the problem when G = <x>, the infinite cyclic group, partly because of its closeness to R[x], the ring of polynomials over R.


1962 ◽  
Vol 5 (3) ◽  
pp. 121-136 ◽  
Author(s):  
H. K. Farahat

Let E be an arbitrary (non-empty) set and S the restricted symmetric group on E, that is the group of all permutations of E which keep all but a finite number of elements of E fixed. If Φ is any commutative ring with unit element, let Γ = Φ(S) be the group algebra of S over Φ,Γ ⊃ Φ and let M be the free Φ-module having E as Φ-base. The “natural” representation of S is obtained by turning M into a Γ-module in the obvious manner, namely by writing for α∈S, λ1∈Φ,


Sign in / Sign up

Export Citation Format

Share Document