Classes of Positive Definite Unimodular Circulants

1957 ◽  
Vol 9 ◽  
pp. 71-73 ◽  
Author(s):  
Morris Newman ◽  
Olga Taussky

All matrices considered here have rational integral elements. In particular some circulants of this nature are investigated. An n × n circulant is of the formThe following result concerning positive definite unimodular circulants was obtained recently (3 ; 4 ):Let C be a unimodular n × n circulant and assume that C = AA' where A is an n × n matrix and A' its transpose. Then it follows that C = C1C1', where C1 is again a circulant.

1988 ◽  
Vol 30 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hugh L. Montgomery

Let be a positive definite binary quadratic form with real coefficients and discriminant b2 − 4ac = −1.Among such forms, let . The Epstein zeta function of f is denned to beRankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every real s > 0,We prove a corresponding result for theta functions. For real α > 0, letThis function satisfies the functional equation(This may be proved by using the formula (4) below, and then twice applying the identity (8).)


1967 ◽  
Vol 4 (1) ◽  
pp. 62-76 ◽  
Author(s):  
Charles J. Mode

SummaryIn this note a renewal density theorem in the multi-dimensional case is formulated and proved. Let f(x) be the density function of a p-dimensional random variable with positive mean vector μ and positive-definite covariance matrix Σ, let hn(x) be the n-fold convolution of f(x) with itself, and set Then for arbitrary choice of integers k1, …, kp–1 distinct or not in the set (1, 2, …, p), it is shown that under certain conditions as all elements in the vector x = (x1, …, xp) become large. In the above expression μ‵ is interpreted as a row vector and μ a column vector. An application to the theory of a class of age-dependent branching processes is also presented.


1969 ◽  
Vol 21 ◽  
pp. 1309-1318 ◽  
Author(s):  
James Stewart

Let G be an abelian group, written additively. A complexvalued function ƒ, defined on G, is said to be positive definite if the inequality1holds for every choice of complex numbers C1, …, cn and S1, …, sn in G. It follows directly from (1) that every positive definite function is bounded. Weil (9, p. 122) and Raïkov (5) proved that every continuous positive definite function on a locally compact abelian group is the Fourier-Stieltjes transform of a bounded positive measure, thus generalizing theorems of Herglotz (4) (G = Z, the integers) and Bochner (1) (G = R, the real numbers).If ƒ is a continuous function, then condition (1) is equivalent to the condition that2


1954 ◽  
Vol 6 ◽  
pp. 416-419 ◽  
Author(s):  
H. M. Sternberg ◽  
R. L. Sternberg

The purpose of this note is to establish Theorem A below for the two-point homogeneous vector boundary problemwhere the Pi(x) are given real m × m symmetric matrix functions of x with P0(x) positive definite and Pi(x) of class C2−i on an infinite interval [a, ∞), and where by a solution of (1.1) — (1.2) for a ≤ x1 < x2 < ∞ we understand a real m-dimensional column vector u = u(x) of class C2 on [a, ∞) which is such that Pi(x)u(2−i) is of class C2−i on [a, ∞) and which satisfies (1.1) — (1.2) with the former a vector identity on [a, ∞).


1935 ◽  
Vol 54 ◽  
pp. 12-16 ◽  
Author(s):  
A. C. Aitken

This paper concludes the study of fitting polynomials by Least Squares, treated in two previous papers. The problem being concerned with the minimum of a positive definite quadratic form, it makes for conciseness to use matrix notation. We shall therefore adopt the following conventions :—The n values of the variable x, of the data u0, u1, …, un−1, of certain polynomials qr(x) entering into the solution, and so on, will be regarded compositely as vectors. They will be imagined as having their components or elements disposed in column array, but when written in full will be written horizontally, to save space, enclosed by curled brackets. Row vectors, when written out in full, will be enclosed by square brackets. In the shorter notation we shall write, for example, u, x for column vectors, u′, x′ for the row vectors obtained by transposition. The vectors occurring in the problem will be the following:—


1990 ◽  
Vol 115 (3-4) ◽  
pp. 231-242 ◽  
Author(s):  
T. J. Lyons ◽  
W. A. Zheng

SynopsisDenote by Xt an n-dimensional symmetric Markov process associated with an elliptic operatorwhere (aij) is a bounded measurable uniformly positive definite matrix-valued function of x. Let f(x, t) be a measurable function defined on Rn × [0, 1]. In this paper, we prove that f(Xt, t) is a regular Dirichlet process if and only if the following two conditions are satisfied:(i) For almost every and (ii) Let be a sequence of subdivisions of [0,1] so thatThenAs an application of the above result, we prove the following fact: Let p(y, t) be the probability density of the diffusion process Yt, associated with the elliptic operatorwhere (bi) are bounded measurable functions of x and we suppose that . Then, p(Yt, t) is a regular Dirichlet process and therefore p(.,.) satisfies (i) and (ii).


Author(s):  
John Lamperti

Some time ago, S. Bochner gave an interesting analysis of certain positive operators which are associated with the ultraspherical polynomials (1,2). Let {Pn(x)} denote these polynomials, which are orthogonal on [ − 1, 1 ] with respect to the measureand which are normalized by settigng Pn(1) = 1. (The fixed parameter γ will not be explicitly shown.) A sequence t = {tn} of real numbers is said to be ‘positive definite’, which we will indicate by writing , provided thatHere the coefficients an are real, and the prime on the summation sign means that only a finite number of terms are different from 0. This condition can be rephrased by considering the set of linear operators on the space of real polynomials which have diagonal matrices with respect to the basis {Pn(x)}, and noting that


1929 ◽  
Vol 24 ◽  
pp. i-iii
Author(s):  
John Dougall

An identity involving symmetric functions of n letters may in a certain class of cases be extended immediately to a greater number of letters.For example, the theoremmay be writtenand in the latter form it is true for any number of letters.


1972 ◽  
Vol 15 (2) ◽  
pp. 295-295
Author(s):  
A. T. Dash

The purpose of this note is to prove the following:Theorem. Let {An} be a positive definite sequence of operators on a Hilbert space H with A0=1. If A1f=f for some f in H, then Anf=f for all n.Note that a bilateral sequence of operators {An:n = 0, ±1, ±2,…} on H is positive definite iffor every finitely nonzero sequence {fn} of vectors in H [1].


1969 ◽  
Vol 10 (3-4) ◽  
pp. 367-384 ◽  
Author(s):  
A. L. Andrew

There is an extensive literature on application of the Ritz method to eigenvalue problems of the type where L1, L2 are positive definite linear operators in a Hilbert space (see for example [1]). The classical theory concerns the case in which there exists a minimum (or maximum) eigenvalue, and subsequent eigenvalues can be located by a well-known mini-max principle [2; p. 405]. This paper considers the possibility of application of the Ritz method to eigenvalue problems of the type (1) where the linear operators L1L2 are not necessarily positive definite and a minimum (or maximum) eigenvalue may not exist. The special cases considered may be written with the eigenvalue occurring in a non-linear manner.


Sign in / Sign up

Export Citation Format

Share Document