density theorem
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 26)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 78 (1) ◽  
pp. 25-42
Author(s):  
Małgorzata Filipczak ◽  
Małgorzata Terepeta

Abstract We examine some generalized densities (called (ψ, n)-densities) obtained as a result of strengthening the Lebesgue Density Theorem. It turns out that these notions are the generalizations of superdensity, enhanced density and m-density, and have some applications in the theory of sets of finite perimeter and in Sobolev spaces.


Author(s):  
Yu Tian ◽  
Hui-Fang Jia ◽  
Guo-Liang He

The theory of Gabor frames has been extensively investigated. This paper addresses partial Gabor systems. We introduce the concepts of partial Gabor system, frame and dual frame. We present some conditions for a partial Gabor system to be a partial Gabor frame, and using these conditions, we characterize partial dual frames. We also give some examples. It is noteworthy that the density theorem does not hold for general partial Gabor systems.


2021 ◽  
Vol 27 (2) ◽  
pp. 220-221
Author(s):  
Cheng Peng

AbstractIn this thesis, we study Turing degrees in the context of classical recursion theory. What we are interested in is the partially ordered structures $\mathcal {D}_{\alpha }$ for ordinals $\alpha <\omega ^2$ and $\mathcal {D}_{a}$ for notations $a\in \mathcal {O}$ with $|a|_{o}\geq \omega ^2$ .The dissertation is motivated by the $\Sigma _{1}$ -elementary substructure problem: Can one structure in the following structures $\mathcal {R}\subsetneqq \mathcal {D}_{2}\subsetneqq \dots \subsetneqq \mathcal {D}_{\omega }\subsetneqq \mathcal {D}_{\omega +1}\subsetneqq \dots \subsetneqq \mathcal {D(\leq \textbf {0}')}$ be a $\Sigma _{1}$ -elementary substructure of another? For finite levels of the Ershov hierarchy, Cai, Shore, and Slaman [Journal of Mathematical Logic, vol. 12 (2012), p. 1250005] showed that $\mathcal {D}_{n}\npreceq _{1}\mathcal {D}_{m}$ for any $n < m$ . We consider the problem for transfinite levels of the Ershov hierarchy and show that $\mathcal {D}_{\omega }\npreceq _{1}\mathcal {D}_{\omega +1}$ . The techniques in Chapters 2 and 3 are motivated by two remarkable theorems, Sacks Density Theorem and the d.r.e. Nondensity Theorem.In Chapter 1, we first briefly review the background of the research areas involved in this thesis, and then review some basic definitions and classical theorems. We also summarize our results in Chapter 2 to Chapter 4. In Chapter 2, we show that for any $\omega $ -r.e. set D and r.e. set B with $D<_{T}B$ , there is an $\omega +1$ -r.e. set A such that $D<_{T}A<_{T}B$ . In Chapter 3, we show that for some notation a with $|a|_{o}=\omega ^{2}$ , there is an incomplete $\omega +1$ -r.e. set A such that there are no a-r.e. sets U with $A<_{T}U<_{T}K$ . In Chapter 4, we generalize above results to higher levels (up to $\varepsilon _{0}$ ). We investigate Lachlan sets and minimal degrees on transfinite levels and show that for any notation a, there exists a $\Delta ^{0}_{2}$ -set A such that A is of minimal degree and $A\not \equiv _T U$ for all a-r.e. sets U.Abstract prepared by Cheng Peng.E-mail: [email protected]


2021 ◽  
Vol 27 (2) ◽  
pp. 218-219
Author(s):  
Yong Liu

AbstractThis dissertation is highly motivated by d.r.e. Nondensity Theorem, which is interesting in two perspectives. One is that it contrasts Sacks Density Theorem, and hence shows that the structures of r.e. degrees and d.r.e. degrees are different. The other is to investigate what other properties a maximal degree can have.In Chapter 1, we briefly review the backgrounds of Recursion Theory which motivate the topics of this dissertation.In Chapter 2, we introduce the notion of $(m,n)$ -cupping degree. It is closely related to the notion of maximal d.r.e. degree. In fact, a $(2,2)$ -cupping degree is maximal d.r.e. degree. We then prove that there exists an isolated $(2,\omega )$ -cupping degree by combining strategies for maximality and isolation with some efforts.Chapter 3 is part of a joint project with Steffen Lempp, Yiqun Liu, Keng Meng Ng, Cheng Peng, and Guohua Wu. In this chapter, we prove that any finite boolean algebra can be embedded into d.r.e. degrees as a final segment. We examine the proof of d.r.e. Nondensity Theorem and make developments to the technique to make it work for our theorem. The goal of the project is to see what lattice can be embedded into d.r.e. degrees as a final segment, as we observe that the technique has potential be developed further to produce other interesting results.Abstract prepared by Yong Liu.E-mail: [email protected]


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manami Roy ◽  
Ralf Schmidt ◽  
Shaoyun Yi

Abstract We find the number s k ⁢ ( p , Ω ) s_{k}(p,\Omega) of cuspidal automorphic representations of GSp ⁢ ( 4 , A Q ) \mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}}) with trivial central character such that the archimedean component is a holomorphic discrete series representation of weight k ≥ 3 k\geq 3 , and the non-archimedean component at 𝑝 is an Iwahori-spherical representation of type Ω and unramified otherwise. Using the automorphic Plancherel density theorem, we show how a limit version of our formula for s k ⁢ ( p , Ω ) s_{k}(p,\Omega) generalizes to the vector-valued case and a finite number of ramified places.


2021 ◽  
Vol 149 (4) ◽  
pp. 1687-1696
Author(s):  
Assis Azevedo ◽  
Davide Azevedo ◽  
Mário Bessa ◽  
Maria Joana Torres

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yangrong Li ◽  
Shuang Yang ◽  
Guangqing Long

<p style='text-indent:20px;'>We study the continuity of a family of random attractors parameterized in a topological space (perhaps non-metrizable). Under suitable conditions, we prove that there is a residual dense subset <inline-formula><tex-math id="M1">\begin{document}$ \Lambda^* $\end{document}</tex-math></inline-formula> of the parameterized space such that the binary map <inline-formula><tex-math id="M2">\begin{document}$ (\lambda, s)\mapsto A_\lambda(\theta_s \omega) $\end{document}</tex-math></inline-formula> is continuous at all points of <inline-formula><tex-math id="M3">\begin{document}$ \Lambda^*\times \mathbb{R} $\end{document}</tex-math></inline-formula> with respect to the Hausdorff metric. The proofs are based on the generalizations of Baire residual Theorem (by Hoang et al. PAMS, 2015), Baire density Theorem and a convergence theorem of random dynamical systems from a complete metric space to the general topological space, and thus the abstract result, even restricted in the deterministic case, is stronger than those in literature. Finally, we establish the residual dense continuity and full upper semi-continuity of random attractors for the random fractional delayed FitzHugh-Nagumo equation driven by nonlinear Wong-Zakai noise, where the size of noise belongs to the parameterized space <inline-formula><tex-math id="M4">\begin{document}$ (0, \infty] $\end{document}</tex-math></inline-formula> and the infinity of noise means that the equation is deterministic.</p>


2021 ◽  
Vol 27 ◽  
pp. 23
Author(s):  
Pierluigi Cesana ◽  
Patrick van Meurs

In materials science, wedge disclinations are defects caused by angular mismatches in the crystallographic lattice. To describe such disclinations, we introduce an atomistic model in planar domains. This model is given by a nearest-neighbor-type energy for the atomic bonds with an additional term to penalize change in volume. We enforce the appearance of disclinations by means of a special boundary condition. Our main result is the discrete-to-continuum limit of this energy as the lattice size tends to zero. Our proof relies on energy relaxation methods. The main mathematical novelty of our proof is a density theorem for the special boundary condition. In addition to our limit theorem, we construct examples of planar disclinations as solutions to numerical minimization of the model and show that classical results for wedge disclinations are recovered by our analysis.


Sign in / Sign up

Export Citation Format

Share Document