Almost-Bounded Holomorphic Functions with Prescribed Ambiguous Points

1964 ◽  
Vol 16 ◽  
pp. 231-240 ◽  
Author(s):  
G. T. Cargo

Let f be a function mapping the open unit disk D into the extended complex plane. A point ζ on the unit circle C is called an ambiguous point of f if there exist two Jordan arcs J1 and J2, each having an endpoint at ζ and lying, except for ζ, in D, such that

1969 ◽  
Vol 35 ◽  
pp. 151-157 ◽  
Author(s):  
V. I. Gavrilov

1. Let D be the open unit disk and r be the unit circle in the complex plane, and denote by Q the extended complex plane or the Rie-mann sphere.


1971 ◽  
Vol 43 ◽  
pp. 157-159
Author(s):  
F. Bagemihl

Let D be the open unit disk and Γ be the unit circle in the complex plane, and denote by Ω the Riemann sphere. If f(z) is a meromorphic function in D, and if ζ∈Г, then the principal cluster set of f at ζ is the set


1971 ◽  
Vol 43 ◽  
pp. 167-168
Author(s):  
J.L. Stebbins

Let f be an arbitrary function from the open unit disk D of the complex plane into the Riemann sphere S. If p is any point on the unit circle C, C(f, p) is the set of all points w such that there exists in D a sequence of points {Zj} such that zj→p and f(zj)→w. CΔ(f, p) is defined in the same way, but the sequence {Zj} is restricted to Δ⊂D. If α and β are two arcs in D terminating at p and Cα(f, p)∩Cβ(f, p) = Φ, p is called an ambiguous point for f.


1966 ◽  
Vol 18 ◽  
pp. 256-264 ◽  
Author(s):  
P. Lappan ◽  
D. C. Rung

Let D and C denote respectively the open unit disk and the unit circle in the complex plane. Further, γ = z(t), 0 ⩽ t ⩽ 1, will denote a simple continuous arc lying in D except for Ƭ = z(l) ∈ C, and we shall say that γ is a boundary arc at Ƭ.We use extensively the notions of non-Euclidean hyperbolic geometry in D and employ the usual metricwhere a and b are elements of D. For a ∈ D and r > 0 letFor details we refer the reader to (4).


1998 ◽  
Vol 50 (3) ◽  
pp. 595-604 ◽  
Author(s):  
Donghan Luo ◽  
Thomas Macgregor

AbstractThis paper studies conditions on an analytic function that imply it belongs to Mα, the set of multipliers of the family of functions given by where μ is a complex Borel measure on the unit circle and α > 0. There are two main theorems. The first asserts that if 0 < α < 1 and sup. The second asserts that if 0 < α < 1, ƒ ∈ H∞ and supt. The conditions in these theorems are shown to relate to a number of smoothness conditions on the unit circle for a function analytic in the open unit disk and continuous in its closure.


1979 ◽  
Vol 31 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Gerard Mcdonald

Let S denote the unit sphere in Cn, B the (open) unit ball in Cn and H∞(B) the collection of all bounded holomorphic functions on B. For f ∈ H∞(B) the limitsexist for almost every ζ in S, and the map ƒ → ƒ* defines an isometric isomorphism from H∞(B) onto a closed subalgebra of L∞(S), denoted H∞(S). (The only measure on S we will refer to in this paper is the Lebesgue measure, dσ, generated by Euclidean surface area.) Rudin has shown in [4] that the spaces H∞(B) + C(B) and H∞(S) + C(S) are Banach algebras in the sup norm. In this paper we will show that the maximal ideal space of H∞(B) + C(B), Σ (H∞(B) + C(B)), is naturally homeomorphic to Σ (H∞(B)) and that Z (H∞(S) + C(S)) is naturally homeomorphic to Σ (H∞(S))\B.


1986 ◽  
Vol 38 (6) ◽  
pp. 1329-1337 ◽  
Author(s):  
Richard J. Libera ◽  
Eligiusz J. Złotkiewicz

If f(z) is univalent (regular and one-to-one) in the open unit disk Δ, Δ = {z ∊ C:│z│ < 1}, and has a Maclaurin series expansion of the form(1.1)then, as de Branges has shown, │ak│ = k, for k = 2, 3, … and the Koebe function.(1.1)serves to show that these bounds are the best ones possible (see [3]). The functions defined above are generally said to constitute the class .


1967 ◽  
Vol 29 ◽  
pp. 7-18 ◽  
Author(s):  
F. Bagemihl

Let Γ be the unit circle and D be the open unit disk in the complex plane, and denote the Riemann sphere by Ω. By an arc at a point ζ∈Γ we mean a continuous curve such that |z(t)| < 1 for 0 ≦ t < 1 and . A terminal subarc of an arc Λ at ζ is a subarc of the form z = z (t) (t0 ≦ t < 1), where 0 ≦ t0<1. Suppose that f(z) is a meromorphic function in D. Then A(f) denotes the set of asymptotic values of f; and if ζ∈Γ, then C(f, ζ) means the cluster set of f at ζ and is the outer angular cluster set of f at ζ (see [13]).


1975 ◽  
Vol 56 ◽  
pp. 163-170
Author(s):  
Akio Osada

The purpose of this paper is to study the distribution of Fatou points of annular functions introduced by Bagemihl and Erdös [1]. Recall that a function f(z), regular in the open unit disk D: | z | < 1, is referred to as an annular function if there exists a sequence {Jn} of closed Jordan curves, converging out to the unit circle C: | z | = 1, such that the minimum modulus of f(z) on Jn increases to infinity. If the Jn can be taken as circles concentric with C, f(z) will be called strongly annular.


1970 ◽  
Vol 40 ◽  
pp. 33-37
Author(s):  
Shinji Yamashita

Let f be of class U in Seidel’s sense ([4, p. 32], = “inner function” in [3, p. 62]) in the open unit disk D. Then f has, by definition, the radial limit f(eiθ) of modulus one a.e. on the unit circle K. As a consequence of Smirnov’s theorem [5, p. 64] we know that the function


Sign in / Sign up

Export Citation Format

Share Document