On Some Diophantine Inequalities Involving the Exponential Function

1965 ◽  
Vol 17 ◽  
pp. 616-626 ◽  
Author(s):  
A. Baker

It is well known that for any real number θ there are infinitely many positive integers n such thatHere ||a|| denotes the distance of a from the nearest integer, taken positively. Indeed, since ||a|| < 1, this implies more generally that if θ1, θ2, . . . , θk are any real numbers, then there are infinitely many positive integers n such that

1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


1982 ◽  
Vol 91 (3) ◽  
pp. 477-484
Author(s):  
Gavin Brown ◽  
William Mohan

Let μ be a probability measure on the real line ℝ, x a real number and δ(x) the probability atom concentrated at x. Stam made the interesting observation that eitheror else(ii) δ(x)* μn, are mutually singular for all positive integers n.


1984 ◽  
Vol 49 (2) ◽  
pp. 343-375 ◽  
Author(s):  
Chris Freiling

Abstract.Banach introduced the following two-person, perfect information, infinite game on the real numbers and asked the question: For which sets A ⊆ R is the game determined?Rules: The two players alternate moves starting with player I. Each move an is legal iff it is a real number and 0 < an, and for n > 1, an < an−1. The first player to make an illegal move loses. Otherwise all moves are legal and I wins iff exists and .We will look at this game and some variations of it, called Banach games. In each case we attempt to find the relationship between Banach determinacy and the determinacy of other well-known and much-studied games.


1965 ◽  
Vol 14 (3) ◽  
pp. 239-241 ◽  
Author(s):  
M. M. Robertson

We prove the following theorem, which was established by Abel (1) for the case u = 1.Theorem. If u, k are positive integers and x, 1, , u, are real numbers, thenwhere the sum is taken over all distinct ordered solutions (s1, , su) in non-negative integers of the equation .


1953 ◽  
Vol 5 ◽  
pp. 456-459 ◽  
Author(s):  
Theodor Estermann

1. Let a be any irrational real number, and let F(u) denote the number of those positive integers for which (n, [nα]) = 1. Watson proved in the preceding paper that


2018 ◽  
Vol 107 (02) ◽  
pp. 272-288
Author(s):  
TOPI TÖRMÄ

We study generalized continued fraction expansions of the form $$\begin{eqnarray}\frac{a_{1}}{N}\frac{}{+}\frac{a_{2}}{N}\frac{}{+}\frac{a_{3}}{N}\frac{}{+}\frac{}{\cdots },\end{eqnarray}$$ where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$ . We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$ . In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$ , a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.


1962 ◽  
Vol 13 (2) ◽  
pp. 143-152 ◽  
Author(s):  
P. H. Diananda

Throughout this paper, unless otherwise stated, n and L stand for positive integers and α, t, x, x1, x2, … for positive real numbers. Letwhereand


Author(s):  
H. R. Pitt

A fundamental result in the theory of measure in the space Ω of real functions x(t) of a real variable t is the following theorem of Kolmogoroff:Theorem 1. Suppose that functions F(t1, …, tn; b1 …, bn) = F(t; b) are defined for positive integers n and real numbers t1, …, tn, b1, …, bn, and have the following properties:(1·1) For every fixedt1, …, tn, F(t; b) has non-negative differenceswith respect to the variables bl, b2,…, bn, and is continuous on the right with respect to each of them;if (i1, …, in) is any permutation of (1, 2, …, n). Then a measure P(X) can be defined in a Borel system of subsets of Ω in such a way that the set of functions satisfyingis measurable for any realbi, tiand has measure F(t; b).


Author(s):  
J. W. S. Cassels

Introduction. If ξ is a real number we denote by ∥ ξ ∥ the difference between ξ and the nearest integer, i.e.It is well known (e.g. Koksma (3), I, Satz 4) that if θ1, θ2, …, θn are any real numbers, the inequalityhas infinitely many integer solutions q > 0. In particular, if α is any real number, the inequalityhas infinitely many solutions.


Sign in / Sign up

Export Citation Format

Share Document