Ideals and Subalgebras of a Function Algebra

1974 ◽  
Vol 26 (02) ◽  
pp. 405-411 ◽  
Author(s):  
Bruce Lund

Let X be a compact Hausdorff space and C(X) the set of all continuous complex-valued functions on X. A function algebra A on X is a uniformly closed, point separating subalgebra of C(X) which contains the constants. Equipped with the sup-norm, A becomes a Banach algebra. We let MA denote the maximal ideal space and SA the Shilov boundary.

2010 ◽  
Vol 88 (3) ◽  
pp. 289-300 ◽  
Author(s):  
F. ALBIAC ◽  
E. BRIEM

AbstractA commutative complex unital Banach algebra can be represented as a space of continuous complex-valued functions on a compact Hausdorff space via the Gelfand transform. However, in general it is not possible to represent a commutative real unital Banach algebra as a space of continuous real-valued functions on some compact Hausdorff space, and for this to happen some additional conditions are needed. In this note we represent a commutative real Banach algebra on a part of its state space and show connections with representations on the maximal ideal space of the algebra (whose existence one has to prove first).


1963 ◽  
Vol 15 ◽  
pp. 323-331 ◽  
Author(s):  
Carl Pearcy

This paper is a continuation of the earlier papers (1, 5) in which the author studied matrices with entries from the algebra C() of all continuous, complex-valued functions on an extremely disconnected, compact Hausdorff space . (Such spaces are sometimes called Stonian, after M. H. Stone, who first considered them in (8). They arise naturally as maximal ideal spaces of abelian W*-algebras.) In this note, three theorems are proved.


2005 ◽  
Vol 48 (1) ◽  
pp. 219-229 ◽  
Author(s):  
N. V. Rao ◽  
A. K. Roy

AbstractLet $\mathcal{A}$ be a closed, point-separating sub-algebra of $C_0(X)$, where $X$ is a locally compact Hausdorff space. Assume that $X$ is the maximal ideal space of $\mathcal{A}$. If $f\in\mathcal{A}$, the set $f(X)\cup\{0\}$ is denoted by $\sigma(f)$. After characterizing the points of the Choquet boundary as strong boundary points, we use this equivalence to provide a natural extension of the theorem in [10], which, in turn, was inspired by the main result in [6], by proving the ‘Main Theorem’: if $\varPhi:\mathcal{A}\rightarrow\mathcal{A}$ is a surjective map with the property that $\sigma(fg)=\sigma(\varPhi(f)\varPhi(g))$ for every pair of functions $f,g\in\mathcal{A}$, then there is an onto homeomorphism $\varLambda:X\rightarrow X$ and a signum function $\epsilon(x)$ on $X$ such that$$ \varPhi(f)(\varLambda(x))=\epsilon(x)f(x) $$for all $x\in X$ and $f\in\mathcal{A}$.AMS 2000 Mathematics subject classification: Primary 46J10; 46J20


1993 ◽  
Vol 36 (1) ◽  
pp. 123-128
Author(s):  
K. Seddighi ◽  
H. Zahedani

AbstractLet C(X) be the space of all continuous complex-valued functions defined on the compact Hausdorff space X. We characterize the M-ideals in a uniform algebra A of C(X) in terms of singular measures. For a Banach function algebra B of C(X) we determine the connection between strong hulls for B and its peak sets. We also show that M(X) the space of complex regular Borel measures on X has no M-ideal.


1989 ◽  
Vol 105 (1) ◽  
pp. 133-138 ◽  
Author(s):  
A. J. Ellis

By a complex function space A we will mean a uniformly closed linear space of continuous complex-valued functions on a compact Hausdorff space X, such that A contains constants and separates the points of X. We denote by S the state-spaceendowed with the w*-topology. If A is self-adjoint then it is well known (cf. [1]) that A is naturally isometrically isomorphic to , and re A is naturally isometrically isomorphic to A(S), where (respectively A(S)) denotes the Banach space of all complex-valued (respectively real-valued) continuous affine functions on S with the supremum norm.


1975 ◽  
Vol 18 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Bruce Lund

Let X be a compact Hausdorff space and C(X) the complexvalued continuous functions on X. We say A is a function algebra on X if A is a point separating, uniformly closed subalgebra of C(X) containing the constant functions. Equipped with the sup-norm ‖f‖ = sup{|f(x)|: x ∊ X} for f ∊ A, A is a Banach algebra. Let MA denote the maximal ideal space.Let D be the closed unit disk in C and let U be the open unit disk. We call A(D)={f ∊ C(D):f is analytic on U} the disk algebra. Let T be the unit circle and set C1(T) = {f ∊ C(T): f'(t) ∊ C(T)}.


1982 ◽  
Vol 34 (3) ◽  
pp. 673-685
Author(s):  
Donna Kumagai

Let A be a uniform algebra on a compact Hausdorff space X. The spectrum, or the maximal ideal space, MA, of A is given byWe define the measure spectrum, SA, of A bySA is the set of all representing measures on X for all Φ ∈ MA. (A representing measure for Φ ∈ MA is a probability measure μ on X satisfyingThe concept of representing measure continues to be an effective tool in the study of uniform algebras. See for example [12, Chapters 2 and 3], [5, pp. 15-22] and [3]. Most of the known results on the subject of representing measures, however, concern measures associated with a single homomorphism.


1978 ◽  
Vol 30 (03) ◽  
pp. 490-498 ◽  
Author(s):  
Nicholas Farnum ◽  
Robert Whitley

The maximal ideals in a commutative Banach algebra with identity have been elegantly characterized [5; 6] as those subspaces of codimension one which do not contain invertible elements. Also, see [1]. For a function algebra A, a closed separating subalgebra with constants of the algebra of complex-valued continuous functions on the spectrum of A, a compact Hausdorff space, this characterization can be restated: Let F be a linear functional on A with the property: (*) For each ƒ in A there is a point s, which may depend on f, for which F(f) = f(s).


1970 ◽  
Vol 22 (5) ◽  
pp. 1002-1004 ◽  
Author(s):  
Robert G. Blumenthal

In this paper we prove that the proper Dirichlet subalgebras of the disc algebra discovered by Browder and Wermer [1] are maximal subalgebras of the disc algebra (Theorem 2). We also give an extension to general function algebras of a theorem of Rudin [4] on the existence of maximal subalgebras of C(X). Theorem 1 implies that every function algebra defined on an uncountable metric space has a maximal subalgebra.A function algebra A on X is a uniformly closed, point-separating subalgebra of C(X), containing the constants, where X is a compact Hausdorff space. If A and B are function algebras on X, A ⊂ B, A ≠ B, we say A is a maximal subalgebra of B if whenever C is a function algebra on X with A ⊂ C ⊂ B, either C = A or C = B.


Author(s):  
T. J. Ransford

Fix the following notation. Let X be a compact Hausdorff space, and denote by C(X) the vector space of continuous complex-valued functions on X, equipped with the uniform norm ∥·∥x. Let A be a unital subalgebra of C(X). A non-empty subset S of X is said to be A-antisymmetric if whenever h ∈ A and h is real-valued on S then h is constant on S.


Sign in / Sign up

Export Citation Format

Share Document