Systems that are Purely Simple and Pure Injegtive

1977 ◽  
Vol 29 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Frank Okoh

There has been a lot of progress made on the finite-dimensional representations of species. In [3] and [11] the finite-dimensional representations of tame species are classified and in [13] it is shown that if S is a species of finite type, then every representation of 5 is a direct sum of finite-dimensional ones. However, comparatively little is known about infinite-dimensional representations.

2019 ◽  
Vol 36 (5) ◽  
pp. 803-839 ◽  
Author(s):  
Massimo Franchi ◽  
Paolo Paruolo

This article defines the class of ${\cal H}$-valued autoregressive (AR) processes with a unit root of finite type, where ${\cal H}$ is a possibly infinite-dimensional separable Hilbert space, and derives a generalization of the Granger–Johansen Representation Theorem valid for any integration order $d = 1,2, \ldots$. An existence theorem shows that the solution of an AR process with a unit root of finite type is necessarily integrated of some finite integer order d, displays a common trends representation with a finite number of common stochastic trends, and it possesses an infinite-dimensional cointegrating space when ${\rm{dim}}{\cal H} = \infty$. A characterization theorem clarifies the connections between the structure of the AR operators and (i) the order of integration, (ii) the structure of the attractor space and the cointegrating space, (iii) the expression of the cointegrating relations, and (iv) the triangular representation of the process. Except for the fact that the dimension of the cointegrating space is infinite when ${\rm{dim}}{\cal H} = \infty$, the representation of AR processes with a unit root of finite type coincides with the one of finite-dimensional VARs, which can be obtained setting ${\cal H} = ^p $ in the present results.


2012 ◽  
Vol 2013 (682) ◽  
pp. 1-48
Author(s):  
Lidia Angeleri Hügel ◽  
Javier Sánchez

Abstract. We give a complete classification of the infinite dimensional tilting modules over a tame hereditary algebra R. We start our investigations by considering tilting modules of the form where is a union of tubes, and denotes the universal localization of R at in the sense of Schofield and Crawley-Boevey. Here is a direct sum of the Prüfer modules corresponding to the tubes in . Over the Kronecker algebra, large tilting modules are of this form in all but one case, the exception being the Lukas tilting module L whose tilting class consists of all modules without indecomposable preprojective summands. Over an arbitrary tame hereditary algebra, T can have finite dimensional summands, but the infinite dimensional part of T is still built up from universal localizations, Prüfer modules and (localizations of) the Lukas tilting module. We also recover the classification of the infinite dimensional cotilting R-modules due to Buan and Krause.


Author(s):  
HENRIK PETERSSON

A classical result states that, in n variables, the space of the entire functionals can be identified with the space of exponential type functions via the Fourier–Borel transform. Thus, in this way the spaces of the entire and exponential type functions can be put in duality, the Martineau duality. We give a proof that the entire functionals, on the countable direct product and direct sum of the field of complex numbers, can be identified with exponential type functions in the same way. In other words, we show that the infinite dimensional Fourier–Borel transform defines Martineau dualities analogous to the finite dimensional case.


1984 ◽  
Vol 49 (4) ◽  
pp. 1137-1145 ◽  
Author(s):  
C. J. Ash ◽  
R. G. Downey

AbstractA subspace V of an infinite dimensional fully effective vector space V∞ is called decidable if V is r.e. and there exists an r.e. W such that V ⊕ W = V∞. These subspaces of V∞ are natural analogues of recursive subsets of ω. The set of r.e. subspaces forms a lattice L(V∞) and the set of decidable subspaces forms a lower semilattice S(V∞). We analyse S(V∞) and its relationship with L(V∞). We show:Proposition. Let U, V, W ∈ L(V∞) where U is infinite dimensional andU ⊕ V = W. Then there exists a decidable subspace D such that U ⊕ D = W.Corollary. Any r.e. subspace can be expressed as the direct sum of two decidable subspaces.These results allow us to show:Proposition. The first order theory of the lower semilattice of decidable subspaces, Th(S(V∞), is undecidable.This contrasts sharply with the result for recursive sets.Finally we examine various generalizations of our results. In particular we analyse S*(V∞), that is, S(V∞) modulo finite dimensional subspaces. We show S*(V∞) is not a lattice.


1970 ◽  
Vol 3 (3) ◽  
pp. 337-348 ◽  
Author(s):  
S. E. Dickson ◽  
G. M. Kelly

The method of interlacing of modules, like amalgamation of groups, is a way of getting new objects from old. Briefly, the interlacing module we consider is a certain factor module of a direct sum of copies (finite or infinite) of an original module M. The conditions given in a previous paper by the first author in order that the interlacing module (using finitely many copies) be indecomposable are here greatly weakened, and we further allow the number of copies of the original to be infinite. R. Colby has shown that if R is a left artinian ring, the existence of a bound on the number of generators required for any indecomposable finitely-generated left R-module implies that R has a distributive lattice of two-sided ideals. This result is extended to rings whose identity is a sum of orthogonal local idempotents.For these rings the same distributivity is proved in case every indecomposable interlacing module of the above type which begins with an indecomposable projective M is finitely-generated. A consequence is that any finite-dimensional algebra over a field having infinitely many two-sided ideals has infinite-dimensional indecomposables.


1988 ◽  
Vol 03 (12) ◽  
pp. 2983-3010 ◽  
Author(s):  
E.S. FRADKIN ◽  
M.A. VASILIEV

An infinite-dimensional non-Abelian superalgebra is constructed, denoted as shsa(1), which gives rise at the linearized level to linearized curvatures of both massless and auxiliary fields, suggested previously by one of us (M.V.). Various properties of shsa(1) are analysed in detail. Specifically, subalgebras of shsa(1) are found which pretend themselves for the role of independent superalgebras of higher spins and auxiliary fields. A simple operator realization of shsa(1) is presented. P-reversal automorphisms are constructed. N=2 anti-de Sitter superalgebra osp(2, 4) is shown to be a maximal finite-dimensional subalgebra of shsa(1)/o(2). It is observed that the even (boson) subalgebra of shsa(1) decomposes into the direct sum of two infinite-dimensional Lie algebras each giving rise to massless fields of all integer spins. Possible physical implications of this fact are discussed briefly.


2021 ◽  
pp. 1-41
Author(s):  
VOLODYMYR MAZORCHUK ◽  
RAFAEL MRÐEN

Abstract For a finite-dimensional Lie algebra $\mathfrak {L}$ over $\mathbb {C}$ with a fixed Levi decomposition $\mathfrak {L} = \mathfrak {g} \ltimes \mathfrak {r}$ , where $\mathfrak {g}$ is semisimple, we investigate $\mathfrak {L}$ -modules which decompose, as $\mathfrak {g}$ -modules, into a direct sum of simple finite-dimensional $\mathfrak {g}$ -modules with finite multiplicities. We call such modules $\mathfrak {g}$ -Harish-Chandra modules. We give a complete classification of simple $\mathfrak {g}$ -Harish-Chandra modules for the Takiff Lie algebra associated to $\mathfrak {g} = \mathfrak {sl}_2$ , and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright’s and Arkhipov’s completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff $\mathfrak {sl}_2$ and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 184-204
Author(s):  
Carlos Barrera-Causil ◽  
Juan Carlos Correa ◽  
Andrew Zamecnik ◽  
Francisco Torres-Avilés ◽  
Fernando Marmolejo-Ramos

Expert knowledge elicitation (EKE) aims at obtaining individual representations of experts’ beliefs and render them in the form of probability distributions or functions. In many cases the elicited distributions differ and the challenge in Bayesian inference is then to find ways to reconcile discrepant elicited prior distributions. This paper proposes the parallel analysis of clusters of prior distributions through a hierarchical method for clustering distributions and that can be readily extended to functional data. The proposed method consists of (i) transforming the infinite-dimensional problem into a finite-dimensional one, (ii) using the Hellinger distance to compute the distances between curves and thus (iii) obtaining a hierarchical clustering structure. In a simulation study the proposed method was compared to k-means and agglomerative nesting algorithms and the results showed that the proposed method outperformed those algorithms. Finally, the proposed method is illustrated through an EKE experiment and other functional data sets.


2013 ◽  
Vol 89 (2) ◽  
pp. 234-242 ◽  
Author(s):  
DONALD W. BARNES

AbstractFor a Lie algebra $L$ over an algebraically closed field $F$ of nonzero characteristic, every finite dimensional $L$-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra $L$ is in the saturated formation $\mathfrak{F}$ and if $V, W$ are irreducible $L$-modules with the same cluster and the $p$-operation vanishes on the centre of the $p$-envelope used, then $V, W$ are either both $\mathfrak{F}$-central or both $\mathfrak{F}$-eccentric. Clusters are used to generalise the construction of induced modules.


1985 ◽  
Vol 31 (3) ◽  
pp. 445-450 ◽  
Author(s):  
Charles Swartz

Shimizu, Aiyoshi and Katayama have recently given a finite dimensional generalization of the classical Farkas Lemma. In this note we show that a result of Pshenichnyi on convex programming can be used to give a generalization of the result of Shimizu, Aiyoshi and Katayama to infinite dimensional spaces. A generalized Farkas Lemma of Glover is also obtained.


Sign in / Sign up

Export Citation Format

Share Document