Variational Methods for One and Several Parameter Non-Linear Eigenvalue Problems

1981 ◽  
Vol 33 (1) ◽  
pp. 210-228 ◽  
Author(s):  
Paul Binding

We shall consider a multiparameter eigenvalue problem of the form(1.1)where λ ∈ Rk while Tn and Vn(λ) are self-adjoint linear operators on a Hilbert space Hn. If λ = (λ1, …, λk) ∈ Rk and satisfy (1.1) then we call λ an eigenvalue, x an eigenvector and (λ, x) an eigenpair. While our main thrust is towTards the general case of several parameters λn, the method ultimately involves reduction to a sequence of one parameter problems. Our chief contributions are (i) to generalise the conditions under which this reduction is possible, and (ii) to develop methods for the one parameter problem particularly suited to the multiparameter application. For example, we give rather general results on the magnitude and direction of the movement of non-linear eigenvalues under perturbation.

Author(s):  
Paul Binding ◽  
Patrick J. Browne ◽  
Lawrence Turyn

SynopsisLet T, V1,…, Vk denote compact symmetric linear operators on a separable Hilbert space H, and write W(λ) = T + λ1V1 + … + λkVk, λ = (λ1, …, λk) ϵ ℝk. We study conditions on the conerelated to solubility of the multiparameter eigenvalue problemwith W(λ)−I nonpositive definite. The main result is as follows.Theorem. If 0 ∉ V, then (*) is soluble for any T. If 0 ∈ V, then there exists T such that (*) is insoluble.We also deduce analogous results for problems involving self-adjoint operators with compact resolvent.


1996 ◽  
Vol 39 (1) ◽  
pp. 119-132 ◽  
Author(s):  
Hans Volkmer

Results are given for the asymptotic spectrum of a multiparameter eigenvalue problem in Hilbert space. They are based on estimates for eigenvalues derived from the minim un-maximum principle. As an application, a multiparameter Sturm-Liouville problem is considered.


Author(s):  
Z. Bohte

SynopsisThis paper studies two particular cases of the general 2-parameter eigenvalue problem namelywhere A, B, B1, B2, C, C1, C2 are self-adjoint operators in Hilbert space, all except A being bounded. The disposable parameters λ and μ have to be determined so that the equations have non-trivial solutions x, y.On the assumption that the solution is known for ∊ = o, solutions are constructed in the form of series for λ, μ, x, y as power series in ∊ with finite radius of convergence.


1988 ◽  
Vol 31 (1) ◽  
pp. 127-144 ◽  
Author(s):  
B. P. Rynne

Let n≧1 be an integer and suppose that for each i= 1,…,n, we have a Hilbert space Hi and a set of bounded linear operators Ti, Vij:Hi→Hi, j=1,…,n. We define the system of operatorswhere λ=(λ1,…,λn)∈ℂn. Coupled systems of the form (1.1) are called multiparameter systems and the spectral theory of such systems has been studied in many recent papers. Most of the literature on multiparameter theory deals with the case where the operators Ti and Vij are self-adjoint (see [14]). The non self-adjoint case, which has received relatively little attention, is discussed in [12] and [13].


1972 ◽  
Vol 13 (3) ◽  
pp. 323-326
Author(s):  
Mary R. Embry

In [1]R. G. Douglas proved that if A and B are continuous linear operators on a Hilbert space X, the following three conditions are equivalent:


1979 ◽  
Vol 22 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Garret J. Etgen ◽  
Roger T. Lewis

Let ℋ be a Hilbert space, let ℬ = (ℋ, ℋ) be the B*-algebra of bounded linear operators from ℋ to ℋ with the uniform operator topology, and let ℒ be the subset of ℬ consisting of the self-adjoint operators. This article is concerned with the second order self-adjoint differential equation


1969 ◽  
Vol 10 (3-4) ◽  
pp. 367-384 ◽  
Author(s):  
A. L. Andrew

There is an extensive literature on application of the Ritz method to eigenvalue problems of the type where L1, L2 are positive definite linear operators in a Hilbert space (see for example [1]). The classical theory concerns the case in which there exists a minimum (or maximum) eigenvalue, and subsequent eigenvalues can be located by a well-known mini-max principle [2; p. 405]. This paper considers the possibility of application of the Ritz method to eigenvalue problems of the type (1) where the linear operators L1L2 are not necessarily positive definite and a minimum (or maximum) eigenvalue may not exist. The special cases considered may be written with the eigenvalue occurring in a non-linear manner.


1976 ◽  
Vol 17 (2) ◽  
pp. 158-160
Author(s):  
Guyan Robertson

In what follows, B(H) will denote the C*-algebra of all bounded linear operators on a Hilbert space H. Suppose we are given a C*-subalgebra A of B(H), which we shall suppose contains the identity operator 1. We are concerned with the existence of states f of B(H) which satisfy the following trace-like relation relative to A:Our first result shows the existence of states f satisfying (*), when A is the C*-algebra C*(x) generated by a normaloid operator × and the identity. This allows us to give simple proofs of some well-known results in operator theory. Recall that an operator × is normaloid if its operator norm equals its spectral radius.


1988 ◽  
Vol 31 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Lucas Jódar

Let L(H) be the algebra of all bounded linear operators on a separable complex Hubert space H. In a recent paper [7], explicit expressions for solutions of a boundary value problem in the Hubert space H, of the typeare given in terms of solutions of an algebraic operator equation


1982 ◽  
Vol 34 (4) ◽  
pp. 883-887 ◽  
Author(s):  
A. R. Lubin

1. An n-tuple S = (S1, …, Sn) of commuting bounded linear operators on a Hilbert space H is said to have commuting normal extension if and only if there exists an n-tuple N = (N1, …, Nn) of commuting normal operators on some larger Hilbert space K ⊃ H with the restrictions Ni|H = Si, i = 1, …, n. If we takethe minimal reducing subspace of N containing H, then N is unique up to unitary equivalence and is called the c.n.e. of S. (Here J denotes the multi-index (j1, …, jn) of nonnegative integers and N*J = N1*jl … Nn*jn and we emphasize that c.n.e. denotes minimal commuting normal extension.) If n = 1, then S1 = S is called subnormal and N1 = N its minimal normal extension (m.n.e.).


Sign in / Sign up

Export Citation Format

Share Document