Congruences on Completely Regular Semigroups

1989 ◽  
Vol 41 (3) ◽  
pp. 439-461 ◽  
Author(s):  
Mario Petrich

There are two subjects in the literature on semigroups which have recently attracted great attention: the class of completely regular semigroups (that is semigroups which are unions of their subgroups) and congruences on regular semigroups. In completely regular semigroups, the most popular subject is that of varieties, even though other aspects of them, such as structure, congruences, amalgamation, received their due attention. On the other hand, the treatment of congruences on regular semigroups became especially interesting with the emergence of the kernel-trace approach. This method proved quite successful in the case of inverse semigroups, see [6], whereas the analysis for the general regular semigroups encounters considerable difficulties, see [4].

1989 ◽  
Vol 40 (1) ◽  
pp. 59-77 ◽  
Author(s):  
T.E. Hall

A natural concept of variety for regular semigroups is introduced: an existence variety (or e-variety) of regular semigroups is a class of regular semigroups closed under the operations H, Se, P of taking all homomorphic images, regular subsernigroups and direct products respectively. Examples include the class of orthodox semigroups, the class of (regular) locally inverse semigroups and the class of regular E-solid semigroups. The lattice of e-varieties of regular semigroups includes the lattices of varieties of inverse semigroups and of completely regular semigroups. A Birkhoff-type theorem is proved, showing that each e-variety is determined by a set of identities: such identities are then given for many e-varieties. The concept is meaningful in universal algebra, and as for regular semigroups could give interesting results for e-varieties of regular rings.


1991 ◽  
Vol 43 (2) ◽  
pp. 225-241 ◽  
Author(s):  
Karl Auinger

The problem of characterizing the semigroups with Boolean congruence lattices has been solved for several classes of semigroups. Hamilton [9] and the author of this paper [1] studied the question for semilattices. Hamilton and Nordahl [10] considered commutative semigroups, Fountain and Lockley [7,8] solved the problem for Clifford semigroups and idempotent semigroups, in [1] the author generalized their results to completely regular semigroups. Finally, Zhitomirskiy [19] studied the question for inverse semigroups.


1984 ◽  
Vol 25 (1) ◽  
pp. 59-74 ◽  
Author(s):  
Mario Petrich ◽  
Norman R. Reilly

In recent years, certain varieties of semigroups with unary operations (of “inversion”) have received considerable attention. Generally speaking, these have been contained in one or other of the two classes of completely regular semigroups (that is, semigroups that are unions of groups) and inverse semigroups. For instances of the former see [1], [2], [3], [6], [10], [14] and [15], and for instances of the latter see [7], [8], [12] and [13].


Author(s):  
P. R. Jones

AbstractSeveral morphisms of this lattice V(CR) are found, leading to decompostions of it, and various sublattices, into subdirect products of interval sublattices. For example the map V → V ∪ G (where G is the variety of groups) is shown to be a retraction of V(CR); from modularity of the lattice V(BG) of varieties of bands of groups it follows that the map V → (V ∪ V V G) is an isomorphism of V(BG).


1998 ◽  
Vol 43 (5) ◽  
pp. 379-381
Author(s):  
Xueming Ren ◽  
Yuqi Guo ◽  
Jiaping Cen

Author(s):  
Mario Petrich ◽  
Norman R. Reilly

AbstractThe class CR of completely regular semigroups (unions of groups or algebras with the associative binary operation of multiplication and the unary operation of inversion subject to the laws x = xx-1, (x−1)-1 = x and xx-1 = x-1x) is a variety. Among the important subclasses of CR are the classes M of monoids and I of idempotent generated members. For each C ∈ {I, M}, there are associated mappings ν → ν ∩ C and ν → (Ν ∩ C), the variety generated by ν ∩ C. The lattice theoretic properties of these mappings and the interactions between these mappings are studied.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950058
Author(s):  
Nares Sawatraksa ◽  
Chaiwat Namnak ◽  
Ronnason Chinram

Let [Formula: see text] be the semigroup of all transformations on a set [Formula: see text]. For an arbitrary equivalence relation [Formula: see text] on [Formula: see text] and a cross-section [Formula: see text] of the partition [Formula: see text] induced by [Formula: see text], let [Formula: see text] [Formula: see text] Then [Formula: see text] and [Formula: see text] are subsemigroups of [Formula: see text]. In this paper, we characterize left regular, right regular and completely regular elements of [Formula: see text] and [Formula: see text]. We also investigate conditions for which of these semigroups to be left regular, right regular and completely regular semigroups.


2013 ◽  
Vol 94 (3) ◽  
pp. 397-416 ◽  
Author(s):  
MARIO PETRICH

AbstractWe consider several familiar varieties of completely regular semigroups such as groups and completely simple semigroups. For each of them, we characterize their members in terms of absence of certain kinds of subsemigroups, as well as absence of certain divisors, and in terms of a homomorphism of a concrete semigroup into the semigroup itself. For each of these varieties $ \mathcal{V} $ we determine minimal non-$ \mathcal{V} $ varieties, provide a basis for their identities, determine their join and give a basis for its identities. Most of this is complete; one of the items missing is a basis for identities for minimal nonlocal orthogroups. Three tables and a figure illustrate the results obtained.


Sign in / Sign up

Export Citation Format

Share Document