On Orbit Closures of Symmetric Subgroups in Flag Varieties

2000 ◽  
Vol 52 (2) ◽  
pp. 265-292 ◽  
Author(s):  
Michel Brion ◽  
Aloysius G. Helminck

AbstractWe study K-orbits in G/P where G is a complex connected reductive group, P ⊆ G is a parabolic subgroup, and K ⊆ G is the fixed point subgroup of an involutive automorphism θ. Generalizing work of Springer, we parametrize the (finite) orbit set K \ G/P and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of θ-stable (resp. θ-split) parabolic subgroups. We also describe the decomposition of any (K, P)-double coset in G into (K, B)-double cosets, where B ⊆ P is a Borel subgroup. Finally, for certain K-orbit closures X ⊆ G/B, and for any homogeneous line bundle on G/B having nonzero global sections, we show that the restriction map resX : H0(G/B, ) → H0(X, ) is surjective and that Hi(X, ) = 0 for i ≥ 1. Moreover, we describe the K-module H0(X, ). This gives information on the restriction to K of the simple G-module H0(G/B, ). Our construction is a geometric analogue of Vogan and Sepanski’s approach to extremal K-types.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Sara Billey ◽  
Matjaz Konvalinka ◽  
T. Kyle Petersen ◽  
William Slofstra ◽  
Bridget Tenner

International audience Parabolic subgroups WI of Coxeter systems (W,S) and their ordinary and double cosets W/WI and WI\W/WJ appear in many contexts in combinatorics and Lie theory, including the geometry and topology of generalized flag varieties and the symmetry groups of regular polytopes. The set of ordinary cosets wWI , for I ⊆ S, forms the Coxeter complex of W , and is well-studied. In this extended abstract, we look at a less studied object: the set of all double cosets WIwWJ for I,J ⊆ S. Each double coset can be presented by many different triples (I, w, J). We describe what we call the lex-minimal presentation and prove that there exists a unique such choice for each double coset. Lex-minimal presentations can be enumerated via a finite automaton depending on the Coxeter graph for (W, S). In particular, we present a formula for the number of parabolic double cosets with a fixed minimal element when W is the symmetric group Sn. In that case, parabolic subgroups are also known as Young subgroups. Our formula is almost always linear time computable in n, and the formula can be generalized to any Coxeter group.


10.37236/6741 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sara C. Billey ◽  
Matjaž Konvalinka ◽  
T. Kyle Petersen ◽  
William Slofstra ◽  
Bridget E. Tenner

Parabolic subgroups $W_I$ of Coxeter systems $(W,S)$, as well as their ordinary and double quotients $W / W_I$ and $W_I \backslash W / W_J$, appear in many contexts in combinatorics and Lie theory, including the geometry and topology of generalized flag varieties and the symmetry groups of regular polytopes. The set of ordinary cosets $w W_I$, for $I \subseteq S$, forms the Coxeter complex of $W$, and is well-studied. In this article we look at a less studied object: the set of all double cosets $W_I w W_J$ for $I, J \subseteq S$. Double cosets are not uniquely presented by triples $(I,w,J)$. We describe what we call the lex-minimal presentation, and prove that there exists a unique such object for each double coset. Lex-minimal presentations are then used to enumerate double cosets via a finite automaton depending on the Coxeter graph for $(W,S)$. As an example, we present a formula for the number of parabolic double cosets with a fixed minimal element when $W$ is the symmetric group $S_n$ (in this case, parabolic subgroups are also known as Young subgroups). Our formula is almost always linear time computable in $n$, and we show how it can be generalized to any Coxeter group with little additional work. We spell out formulas for all finite and affine Weyl groups in the case that $w$ is the identity element.


1989 ◽  
Vol 41 (2) ◽  
pp. 285-320 ◽  
Author(s):  
W. Casselman

Let G be the group of R-rational points on a reductive group defined over Q and T an arithmetic subgroup. The aim of this paper is to describe in some detail the Schwartz space (whose definition I recall in Section 1) and in particular to explain a decomposition of this space into constituents parametrized by the T-associate classes of rational parabolic subgroups of G. This is analogous to the more elementary of the two well known decompositions of L2 (T\G) in [20](or [17]), and a proof of something equivalent was first sketched by Langlands himself in correspondence with A. Borel in 1972. (Borel has given an account of this in [8].)Langlands’ letter was in response to a question posed by Borel concerning a decomposition of the cohomology of arithmetic groups, and the decomposition I obtain here was motivated by a similar question, which is dealt with at the end of the paper.


1988 ◽  
Vol 40 (3) ◽  
pp. 633-648 ◽  
Author(s):  
George Kempf ◽  
Linda Ness

Let G be a reductive group over a field of characteristic zero. Fix a Borel subgroup B of G which contains a maximal torus T. For each dominant weight X we have an irreducible representation V(X) of G with highest weight X. For two dominant representation X1 and X2 we have a decompositionThis decomposition is determined by the elementof the group ring of the group of characters of T.The objective of this paper is to compute r(X1, X2) for all pairs X1 and X2 of fundamental weights. This will be used to compute the equations for cones over homogeneous spaces. This problem immediately reduces to the case when G has simple type; An, Bn, Cn, Dn, E6, E7, E8, F4 and G2. We will give complete details for the classical types. For the case An we will work with GLn.


2019 ◽  
Vol 7 ◽  
Author(s):  
ARAM BINGHAM ◽  
MAHIR BILEN CAN ◽  
YILDIRAY OZAN

Let $G/H$ be a homogeneous variety and let $X$ be a $G$ -equivariant embedding of $G/H$ such that the number of $G$ -orbits in $X$ is finite. We show that the equivariant Borel–Moore homology of $X$ has a filtration with associated graded module the direct sum of the equivariant Borel–Moore homologies of the $G$ -orbits. If $T$ is a maximal torus of $G$ such that each $G$ -orbit has a $T$ -fixed point, then the equivariant filtration descends to give a filtration on the ordinary Borel–Moore homology of $X$ . We apply our findings to certain wonderful compactifications as well as to double flag varieties.


1999 ◽  
Vol 51 (3) ◽  
pp. 616-635 ◽  
Author(s):  
Dmitri I. Panyushev

AbstractLet L be a simple algebraic group and P a parabolic subgroup with Abelian unipotent radical Pu. Many familiar varieties (determinantal varieties, their symmetric and skew-symmetric analogues) arise as closures of P-orbits in Pu. We give a unified invariant-theoretic treatment of various properties of these orbit closures. We also describe the closures of the conormal bundles of these orbits as the irreducible components of some commuting variety and show that the polynomial algebra k[Pu] is a free module over the algebra of covariants.


Sign in / Sign up

Export Citation Format

Share Document