scholarly journals Symmetric functions on spaces $\ell_p(\mathbb{{R}}^n)$ and $\ell_p(\mathbb{{C}}^n)$

2020 ◽  
Vol 12 (1) ◽  
pp. 5-16
Author(s):  
T.V. Vasylyshyn

This work is devoted to study algebras of continuous symmetric, that is, invariant with respect to permutations of coordinates of its argument, polynomials and $*$-polynomials on Banach spaces $\ell_p(\mathbb{R}^n)$ and $\ell_p(\mathbb{C}^n)$ of $p$-power summable sequences of $n$-dimensional vectors of real and complex numbers resp., where $1\leq p < +\infty.$ We construct the subset of the algebra of all continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n)$ such that every continuous symmetric polynomial on the space $\ell_p(\mathbb{R}^n)$ can be uniquely represented as a linear combination of products of elements of this set. In other words, we construct an algebraic basis of the algebra of all continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n).$ Using this result, we construct an algebraic basis of the algebra of all continuous symmetric $*$-polynomials on the space $\ell_p(\mathbb{C}^n).$ Results of the paper can be used for investigations of algebras, generated by continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n),$ and algebras, generated by continuous symmetric $*$-polynomials on the space $\ell_p(\mathbb{C}^n).$

2021 ◽  
Vol 13 (3) ◽  
pp. 727-733
Author(s):  
M.V. Martsinkiv ◽  
S.I. Vasylyshyn ◽  
T.V. Vasylyshyn ◽  
A.V. Zagorodnyuk

We investigate Lipschitz symmetric functions on a Banach space $X$ with a symmetric basis. We consider power symmetric polynomials on $\ell_1$ and show that they are Lipschitz on the unbounded subset consisting of vectors $x\in \ell_1$ such that $|x_n|\le 1.$ Using functions $\max$ and $\min$ and tropical polynomials of several variables, we constructed a large family of Lipschitz symmetric functions on the Banach space $c_0$ which can be described as a semiring of compositions of tropical polynomials over $c_0$.


2002 ◽  
Vol 54 (2) ◽  
pp. 239-262 ◽  
Author(s):  
Donald I. Cartwright ◽  
Tim Steger

AbstractWe describe the set of numbers σk(z1,…,zn+1), where z1,…,zn+1 are complex numbers of modulus 1 for which z1z2 … zn+1 = 1, and σk denotes the k-th elementary symmetric polynomial. Consequently, we give sharp constraints on the coefficients of a complex polynomial all of whose roots are of the same modulus. Another application is the calculation of the spectrum of certain adjacency operators arising naturally on a building of type Ãn.


2020 ◽  
Vol 53 (2) ◽  
pp. 192-205
Author(s):  
T. Vasylyshyn ◽  
A. Zagorodnyuk

We construct an algebraic basis of the algebra of symmetric (invariant under composition of the variable with any measure preserving bijection of $[0,1]$) continuous polynomials on the $n$th Cartesian power of the real Banachspace $L_^{(\mathbb{R})}\infty[0,1]$ of Lebesgue measurable essentially bounded real valued functions on $[0,1].$ Also we describe the spectrum of the Fr\'{e}chet algebra $A_s(L_^{(\mathbb{R})}\infty[0,1])$ of symmetric real-valued functions on the space $L_^{(\mathbb{R})}\infty[0,1]$, which is the completion of the algebra of symmetric continuous real-valued polynomials on  $L_^{(\mathbb{R})}\infty[0,1]$ with respect to the family of norms of uniform convergence of complexifications of polynomials. We show that $A_s(L_^{(\mathbb{R})}\infty[0,1])$ contains not only analytic functions. Results of the paper can be used for investigations of algebras of symmetric functions on the $n$th Cartesian power of the Banach space $L_^{(\mathbb{R})}\infty[0,1]$.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jan-Willem M. van Ittersum

AbstractThe algebra of so-called shifted symmetric functions on partitions has the property that for all elements a certain generating series, called the q-bracket, is a quasimodular form. More generally, if a graded algebra A of functions on partitions has the property that the q-bracket of every element is a quasimodular form of the same weight, we call A a quasimodular algebra. We introduce a new quasimodular algebra $$\mathcal {T}$$ T consisting of symmetric polynomials in the part sizes and multiplicities.


10.37236/7387 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Stokke

The classical Pieri formula gives a combinatorial rule for decomposing the product of a Schur function and a complete homogeneous symmetric polynomial as a linear combination of Schur functions with integer coefficients. We give a Pieri rule for describing the product of an orthosymplectic character and an orthosymplectic character arising from a one-row partition. We establish that the orthosymplectic Pieri rule coincides with Sundaram's Pieri rule for symplectic characters and that orthosymplectic characters and symplectic characters obey the same product rule. 


2021 ◽  
Author(s):  
◽  
Leigh Alan Roberts

<p>Jack polynomials are useful in mathematical statistics, but they are awkward to calculate, and their uses have chiefly been theoretical. In this thesis a determinantal expansion of Jack polynomials in elementary symmetric polynomials is found, complementing a recent result in the literature on expansions as determinants in monomial symmetric functions. These results offer enhanced possibilities for the calculation of these polynomials, and for finding workable approximations to them. The thesis investigates the structure of the determinants concerned, finding which terms can be expected to dominate, and quantifying the sparsity of the matrices involved. Expressions are found for the elementary and monomial symmetric polynomials when the variates involved assume the form of arithmetic and geometric progressions. The latter case in particular is expected to facilitate the construction of algorithms suitable for approximating Jack polynomials.</p>


Author(s):  
Mykhailo Fys ◽  
Roman Kvit ◽  
Tetyana Salo

The formulas presented in this paper make it possible to select the real and imaginary part of the determinant value of the n -th order complex quantity, greatly simplifying the process of its deployment. Moreover, its module is given by the determinant of the 2n -th order, the elements of which are the real and imaginary parts of complex numbers. This makes it possible to analyze analytically the process described using determinants with complex numbers. The real and imaginary parts are also determined by the sum of determinants already with n rows and columns, the elements of which make up complex elements. The terms of this sum are solutions of a system of equations represented in closed form using symmetric polynomials, the arguments of which are its coefficients. Part of this combination is expressed by two determinants of the n -th order, the elements of which are the sum and difference of the real and imaginary parts of the elements. This significantly reduces the number of arithmetic operations during the deployment of a complex determinant and the selection of its real and imaginary parts. The given numerical example confirms the feasibility of this approach.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Radmila Sazdanović ◽  
Martha Yip

International audience The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$<sub>*</sub>($G$) of graded $S_n$-modules, whose graded Frobenius series $Frob_G(q,t)$ reduces to the chromatic symmetric function at $q=t=1$. We also obtain analogues of several familiar properties of the chromatic symmetric polynomials in terms of homology. Le polynôme chromatique symétrique d’un graphe $G$ est une généralisation par une fonction symétrique du polynôme chromatique, et possède des propriétés combinatoires intéressantes. Nous appliquons les techniques de l’homologie de Khovanov pour construire une homologie $H$<sub>*</sub>($G$) de modules gradués $S_n$, dont la série bigraduée de Frobeniusse $Frob_G(q,t)$ réduit au polynôme chromatique symétrique à $q=t=1$. Nous obtenons également des analogies pour plusieurs propriétés connues des polynômes chromatiques en termes d’homologie.


2002 ◽  
Vol 65 (1) ◽  
pp. 9-22
Author(s):  
Takahiko Nakazi ◽  
Takanori Yamamoto

Let α, β γ, δ be complex numbers such that γδ ≠ 0. If A and B are bounded linear operators on the Hilbert space H such that γA + δB is right invertible then we study the operator norm of (αA + βB)(γA + δB)−1 using the angle φ between two subspaces ran A and ran B or the angle ψ = ψ(A, B) between two operators A and B where


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Victoriia Kravtsiv ◽  
Taras Vasylyshyn ◽  
Andriy Zagorodnyuk

We consider polynomials on spaces lpCn,1≤p<+∞, of p-summing sequences of n-dimensional complex vectors, which are symmetric with respect to permutations of elements of the sequences, and describe algebraic bases of algebras of continuous symmetric polynomials on lpCn.


Sign in / Sign up

Export Citation Format

Share Document