scholarly journals Euclidean Rings of Algebraic Integers

2004 ◽  
Vol 56 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Malcolm Harper ◽  
M. Ram Murty

AbstractLet K be a finite Galois extension of the field of rational numbers with unit rank greater than 3. We prove that the ring of integers of K is a Euclidean domain if and only if it is a principal ideal domain. This was previously known under the assumption of the generalized Riemann hypothesis for Dedekind zeta functions. We now prove this unconditionally.

2011 ◽  
Vol 07 (01) ◽  
pp. 101-114
Author(s):  
S. GURAK

Let K be a field of degree n over Q, the field of rational numbers, with ring of integers O. Fix an integer m > 1, say with [Formula: see text] as a product of distinct prime powers, and let χ be a numerical character modulo m of conductor f(χ). Set ζm = exp (2πi/m) and let M be any ideal of O satisfying Tr M ⊆ mZ and N(1 + M) ⊆ 1 + f(χ)Z, where Tr and N are the trace and norm maps for K/Q. Then the Gauss sum [Formula: see text] is well-defined. If in addition N(1 + M) ⊆ 1 + mZ, then the Kloosterman sums [Formula: see text] are well-defined for any numerical character η ( mod m). The computation of GM(χ) and RM(η, z) is shown to reduce to their determination for m = pr, a power of a prime p, where M is comprised solely of ideals of K lying above p. In this setting we first explicitly determine GM(χ) for m = pr (r > 1) generalizing Mauclaire's classical result for K = Q. Relying on the recent evaluation of Kloosterman sums for prime powers in p-adic fields, we then proceed to compute the Kloosterman sums RM(η, z) here for m = pr (r > 1) when o(η) | p -1. This determination generalizes Salie's result in the classical case K = Q with o(η) = 1 or 2.


Author(s):  
Chris Bruce

Abstract We compute the KMS (equilibrium) states for the canonical time evolution on C*-algebras from actions of congruence monoids on rings of algebraic integers. We show that for each $\beta \in [1,2]$, there is a unique KMS$_\beta $ state, and we prove that it is a factor state of type III$_1$. There are phase transitions at $\beta =2$ and $\beta =\infty $ involving a quotient of a ray class group. Our computation of KMS and ground states generalizes the results of Cuntz, Deninger, and Laca for the full $ax+b$-semigroup over a ring of integers, and our type classification generalizes a result of Laca and Neshveyev in the case of the rational numbers and a result of Neshveyev in the case of arbitrary number fields.


2004 ◽  
Vol 23 (4) ◽  
pp. 114-125
Author(s):  
Cody Patterson ◽  
Kirby C. Smith ◽  
Leon Van Wyk

Whereas the homomorphic images of Z (the ring of integers) are well known, namely Z, {0} and Zn (the ring of integers modulo n), the same is not true for the homomorphic im-ages of Z[i] (the ring of Gaussian integers). More generally, let m be any nonzero square free integer (positive or negative), and consider the integral domain Z[ √m]={a + b √m | a, b ∈ Z}. Which rings can be homomorphic images of Z[ √m]? This ques-tion offers students an infinite number (one for each m) of investigations that require only undergraduate mathematics. It is the goal of this article to offer a guide to the in-vestigation of the possible homomorphic images of Z[ √m] using the Gaussian integers Z[i] as an example. We use the fact that Z[i] is a principal ideal domain to prove that if I =(a+bi) is a nonzero ideal of Z[i], then Z[i]/I ∼ = Zn for a positive integer n if and only if gcd{a, b} =1, in which case n = a2 + b2 . Our approach is novel in that it uses matrix techniques based on the row reduction of matrices with integer entries. By characterizing the integers n of the form n = a2 + b2 , with gcd{a, b} =1, we obtain the main result of the paper, which asserts that if n ≥ 2, then Zn is a homomorphic image of Z[i] if and only if the prime decomposition of n is 2α0 pα1 1 ··· pαk k , with α0 ∈{0, 1},pi ≡ 1(mod 4) and αi ≥ 0 for every i ≥ 1. All the fields which are homomorpic images of Z[i] are also determined.


2012 ◽  
Vol 8 (2) ◽  
Author(s):  
Tri Widjajanti ◽  
Dahlia Ramlan ◽  
Rium Hilum

<em>Ring of integers under the addition and multiplication as integral domain can be imbedded to the field of rational numbers. In this paper we make&nbsp; a construction such that any integral domain can be&nbsp; a field of quotient. The construction contains three steps. First, we define element of field F from elements of integral domain D. Secondly, we show that the binary operations in fare well-defined. Finally, we prove that </em><em>&nbsp;</em><em>f</em><em> </em><em>:</em><em> </em><em>D </em><em>&reg;</em><em> </em><em>F is an isomorphisma. In this case, the polynomial ring F[x] as the integral domain can be imbedded to the field of quotient.</em>


Sign in / Sign up

Export Citation Format

Share Document