scholarly journals A Skolem–Mahler–Lech Theorem for Iterated Automorphisms of K–algebras

2015 ◽  
Vol 67 (2) ◽  
pp. 286-314
Author(s):  
Jason P. Bell ◽  
Jeffrey C. Lagarias

AbstractIn this paper we prove a commutative algebraic extension of a generalized Skolem–Mahler– Lech theorem. Let A be a finitely generated commutative K–algebra over a field of characteristic 0, and let σ be a K–algebra automorphism of A. Given ideals I and J of A, we show that the set S of integers m such that J is a finite union of complete doubly infinite arithmetic progressions in m, up to the addition of a finite set. Alternatively, this result states that for an affine scheme X of finite type over K, an automorphism σ∊ 2 AutK(X), and Y and Z any two closed subschemes of X, the set of integers m with Y is as above. We present examples showing that this result may fail to hold if the affine scheme X is not of finite type, or if X is of finite type but the field K has positive characteristic.

2010 ◽  
Vol 31 (4) ◽  
pp. 1109-1161 ◽  
Author(s):  
J.-R. CHAZOTTES ◽  
J.-M. GAMBAUDO ◽  
E. UGALDE

AbstractLet A be a finite set and let ϕ:Aℤ→ℝ be a locally constant potential. For each β>0 (‘inverse temperature’), there is a unique Gibbs measure μβϕ. We prove that as β→+∞, the family (μβϕ)β>0 converges (in the weak-* topology) to a measure that we characterize. This measure is concentrated on a certain subshift of finite type, which is a finite union of transitive subshifts of finite type. The two main tools are an approximation by periodic orbits and the Perron–Frobenius theorem for matrices à la Birkhoff. The crucial idea we bring is a ‘renormalization’ procedure which explains convergence and provides a recursive algorithm for computing the weights of the ergodic decomposition of the limit.


2009 ◽  
Vol 19 (03) ◽  
pp. 287-303 ◽  
Author(s):  
ISABEL GOFFA ◽  
ERIC JESPERS ◽  
JAN OKNIŃSKI

Let A be a finitely generated commutative algebra over a field K with a presentation A = K 〈X1,…, Xn | R〉, where R is a set of monomial relations in the generators X1,…, Xn. So A = K[S], the semigroup algebra of the monoid S = 〈X1,…, Xn | R〉. We characterize, purely in terms of the defining relations, when A is an integrally closed domain, provided R contains at most two relations. Also the class group of such algebras A is calculated.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


2019 ◽  
Vol 71 (1) ◽  
pp. 53-71
Author(s):  
Peter Mayr ◽  
Nik Ruškuc

Abstract Let $K$ be a commutative Noetherian ring with identity, let $A$ be a $K$-algebra and let $B$ be a subalgebra of $A$ such that $A/B$ is finitely generated as a $K$-module. The main result of the paper is that $A$ is finitely presented (resp. finitely generated) if and only if $B$ is finitely presented (resp. finitely generated). As corollaries, we obtain: a subring of finite index in a finitely presented ring is finitely presented; a subalgebra of finite co-dimension in a finitely presented algebra over a field is finitely presented (already shown by Voden in 2009). We also discuss the role of the Noetherian assumption on $K$ and show that for finite generation it can be replaced by a weaker condition that the module $A/B$ be finitely presented. Finally, we demonstrate that the results do not readily extend to non-associative algebras, by exhibiting an ideal of co-dimension $1$ of the free Lie algebra of rank 2 which is not finitely generated as a Lie algebra.


1975 ◽  
Vol 19 (2) ◽  
pp. 238-246 ◽  
Author(s):  
J. Berman ◽  
ph. Dwinger

If L is a pseudocomplemented distributive lattice which is generated by a finite set X, then we will show that there exists a subset G of L which is associated with X in a natural way that ¦G¦ ≦ ¦X¦ + 2¦x¦ and whose structure as a partially ordered set characterizes the structure of L to a great extent. We first prove in Section 2 as a basic fact that each element of L can be obtained by forming sums (joins) and products (meets) of elements of G only. Thus, L considered as a distributive lattice with 0,1 (the operation of pseudocomplementation deleted), is generated by G. We apply this to characterize for example, the maximal homomorphic images of L in each of the equational subclasses of the class Bω of pseudocomplemented distributive lattices, and also to find the conditions which have to be satisfied by G in order that X freely generates L.


1987 ◽  
Vol 52 (3) ◽  
pp. 786-792
Author(s):  
Michael H. Albert ◽  
Ross Willard

AbstractLet K be a finite set of finite structures. We give a syntactic characterization of the property: every element of K is injective in ISP(K). We use this result to establish that is injective in ISP() for every two-element algebra .


2016 ◽  
Vol 25 (06) ◽  
pp. 1650034 ◽  
Author(s):  
Martin Bobb ◽  
Stephen Kennedy ◽  
Helen Wong ◽  
Dylan Peifer

Generalizing the construction of the Kauffman bracket skein algebra, Roger and Yang defined the Kauffman bracket arc algebra of a punctured surface, so that it is a quantization of the decorated Teichmüller space. We provide an explicit, finite set of generators for their algebra.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650090 ◽  
Author(s):  
Seda Oğuz ◽  
Eylem G. Karpuz

In [Finite presentability of Bruck–Reilly extensions of groups, J. Algebra 242 (2001) 20–30], Araujo and Ruškuc studied finite generation and finite presentability of Bruck–Reilly extension of a group. In this paper, we aim to generalize some results given in that paper to generalized Bruck–Reilly ∗-extension of a group. In this way, we determine necessary and sufficent conditions for generalized Bruck–Reilly ∗-extension of a group, [Formula: see text], to be finitely generated and finitely presented. Let [Formula: see text] be a group, [Formula: see text] be morphisms and [Formula: see text] ([Formula: see text] and [Formula: see text] are the [Formula: see text]- and [Formula: see text]-classes, respectively, contains the identity element [Formula: see text] of [Formula: see text]). We prove that [Formula: see text] is finitely generated if and only if there exists a finite subset [Formula: see text] such that [Formula: see text] is generated by [Formula: see text]. We also prove that [Formula: see text] is finitely presented if and only if [Formula: see text] is presented by [Formula: see text], where [Formula: see text] is a finite set and [Formula: see text] [Formula: see text] for some finite set of relations [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document