Rigidity and Height Bounds for Certain Post-critically Finite Endomorphisms of ℙN

2016 ◽  
Vol 68 (3) ◽  
pp. 625-654 ◽  
Author(s):  
Patrick Ingram

AbstractThe morphism f:ℙN→ℙN is called post–critically finite (PCF) if the forward image of the critical locus, under iteration of f, has algebraic support. In the case N = 1, a result of Thurston implies that there are no algebraic families of PCF morphisms, other than a well-understood exceptional class known as the flexible Lattés maps. A related arithmetic result states that the set of PCF morphisms corresponds to a set of bounded height in the moduli space of univariate rational functions. We prove corresponding results for a certain subclass of the regular polynomial endomorphisms of ℙN for any N.

2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Raúl Felipe ◽  
Nancy López

The set of all rational functions with any fixed denominator that simultaneously nullify in the infinite point is parametrized by means of a well-known integrable system: a finite dimensional version of the discrete KP hierarchy. This type of study was originated in Y. Nakamura's works who used others integrable systems. Our work proves that the finite discrete KP hierarchy completely parametrizes the spaceRatΛ(n)of rational functions of the formf(x)=q(x)/zn, whereq(x)is a polynomial of ordern−1with nonzero independent coefficent. More exactly, it is proved that there exists a bijection fromRatΛ(n)to the moduli space of solutions of the finite discrete KP hierarchy and a compatible linear system.


2001 ◽  
Vol 15 (4) ◽  
pp. 279-289
Author(s):  
S. L. Dubovsky
Keyword(s):  

Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Sign in / Sign up

Export Citation Format

Share Document