scholarly journals A Boltzmann Approach to Percolation on Random Triangulations

2019 ◽  
Vol 71 (1) ◽  
pp. 1-43 ◽  
Author(s):  
Olivier Bernardi ◽  
Nicolas Curien ◽  
Grégory Miermont

AbstractWe study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bond-percolation) on this triangulation. By enumerating triangulations with boundaries according to both the boundary length and the number of vertices/edges on the boundary, we are able to identify a phase transition for the geometry of the origin cluster. For instance, we show that the probability that a percolation interface has length$n$decays exponentially with$n$except at a particular value$p_{c}$of the percolation parameter$p$for which the decay is polynomial (of order$n^{-10/3}$). Moreover, the probability that the origin cluster has size$n$decays exponentially if$p<p_{c}$and polynomially if$p\geqslant p_{c}$.The critical percolation value is$p_{c}=1/2$for site percolation, and$p_{c}=(2\sqrt{3}-1)/11$for bond percolation. These values coincide with critical percolation thresholds for infinite triangulations identified by Angel for site-percolation, and by Angel and Curien for bond-percolation, and we give an independent derivation of these percolation thresholds.Lastly, we revisit the criticality conditions for random Boltzmann maps, and argue that at$p_{c}$, the percolation clusters conditioned to have size$n$should converge toward the stable map of parameter$\frac{7}{6}$introduced by Le Gall and Miermont. This enables us to derive heuristically some new critical exponents.

1997 ◽  
Vol 4 (1) ◽  
pp. 11-18 ◽  
Author(s):  
M. Canals ◽  
M. Ayt Ougoudal

Abstract. A bond-percolation model based on the Bethe Lattice is presented. This model handles anisotropic and multiscale situations where, typically, the bond probability is non unique and depends on the sites it connects. The model is governed by a set of non-linear equations which are solved numerically. As a result, the structure of the network is obtained: strengths of the backbone, dead-end roads and finite clusters. Percolation thresholds and cluster sizes are also obtained. Application to fissured media is presented and random simulations of 3D distributions of fractures show the good accuracy of the model.


2000 ◽  
Vol 62 (13) ◽  
pp. 8719-8724 ◽  
Author(s):  
H. M. Harreis ◽  
W. Bauer

Author(s):  
D. G. Neal

AbstractThis paper describes new detailed Monte Carlo investigations into bond and site percolation problems on the set of eleven regular and semi-regular (Archimedean) lattices in two dimensions.


2002 ◽  
Vol 13 (03) ◽  
pp. 319-331 ◽  
Author(s):  
S. S. MANNA ◽  
T. DATTA ◽  
R. KARMAKAR ◽  
S. TARAFDAR

The restructuring process of diagenesis in the sedimentary rocks is studied using a percolation type model. The cementation and dissolution processes are modeled by the culling of occupied sites in rarefied and growth of vacant sites in dense environments. Starting from sub-critical states of ordinary percolation the system evolves under the diagenetic rules to critical percolation configurations. Our numerical simulation results in two dimensions indicate that the stable configuration has the same critical behavior as the ordinary percolation.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 11-22 ◽  
Author(s):  
PAUL BALISTER ◽  
BÉLA BOLLOBÁS

Given a locally finite connected infinite graphG, let the interval [pmin(G),pmax(G)] be the smallest interval such that ifp>pmax(G), then every 1-independent bond percolation model onGwith bond probabilityppercolates, and forp<pmin(G) none does. We determine this interval for trees in terms of the branching number of the tree. We also give some general bounds for other graphsG, in particular for lattices.


2009 ◽  
Vol 80 (5) ◽  
Author(s):  
Yoichiro Kondo ◽  
Namiko Mitarai ◽  
Hiizu Nakanishi

1991 ◽  
Vol 80 (3) ◽  
pp. 461-464 ◽  
Author(s):  
T.R. Gawron ◽  
Marek Cieplak

Sign in / Sign up

Export Citation Format

Share Document