scholarly journals A Norm Inequality for Linear Transformations

1961 ◽  
Vol 4 (3) ◽  
pp. 239-242
Author(s):  
B.N. Moyls ◽  
N.A. Khan

In 1949 Ky Fan [1] proved the following result: Let λ1…λn be the eigenvalues of an Hermitian operator H on an n-dimensional vector space Vn. If x1, …, xq is an orthonormal set in V1, and q is a positive integer such n that 1 ≤ q ≤ n, then1

1961 ◽  
Vol 13 ◽  
pp. 614-624 ◽  
Author(s):  
H. Kestelman

It is well known that any set of four anticommuting involutions (see §2) in a four-dimensional vector space can be represented by the Dirac matrices(1)where the B1,r are the Pauli matrices(2)(See (1) for a general exposition with applications to Quantum Mechanics.) One formulation, which we shall call the Dirac-Pauli theorem (2; 3; 1), isTheorem 1. If M1,M2, M3, M4 are 4 X 4 matrices satisfyingthen there is a matrix T such thatand T is unique apart from an arbitrary numerical multiplier.


1980 ◽  
Vol 32 (4) ◽  
pp. 957-968 ◽  
Author(s):  
G. H. Chan ◽  
M. H. Lim

Let U be a k-dimensional vector space over the complex numbers. Let ⊗m U denote the mth tensor power of U where m ≧ 2. For each permutation σ in the symmetric group Sm, there exists a linear mapping P(σ) on ⊗mU such thatfor all x1, …, xm in U.Let G be a subgroup of Sm and λ an irreducible (complex) character on G. The symmetrizeris a projection of ⊗ mU. Its range is denoted by Uλm(G) or simply Uλ(G) and is called the symmetry class of tensors corresponding to G and λ.


2017 ◽  
Vol 103 (3) ◽  
pp. 402-419 ◽  
Author(s):  
WORACHEAD SOMMANEE ◽  
KRITSADA SANGKHANAN

Let$V$be a vector space and let$T(V)$denote the semigroup (under composition) of all linear transformations from$V$into$V$. For a fixed subspace$W$of$V$, let$T(V,W)$be the semigroup consisting of all linear transformations from$V$into$W$. In 2008, Sullivan [‘Semigroups of linear transformations with restricted range’,Bull. Aust. Math. Soc.77(3) (2008), 441–453] proved that$$\begin{eqnarray}\displaystyle Q=\{\unicode[STIX]{x1D6FC}\in T(V,W):V\unicode[STIX]{x1D6FC}\subseteq W\unicode[STIX]{x1D6FC}\} & & \displaystyle \nonumber\end{eqnarray}$$is the largest regular subsemigroup of$T(V,W)$and characterized Green’s relations on$T(V,W)$. In this paper, we determine all the maximal regular subsemigroups of$Q$when$W$is a finite-dimensional subspace of$V$over a finite field. Moreover, we compute the rank and idempotent rank of$Q$when$W$is an$n$-dimensional subspace of an$m$-dimensional vector space$V$over a finite field$F$.


Author(s):  
Suzana Mendes-Gonçalves ◽  
R. P. Sullivan

Given an infinite-dimensional vector space V, we consider the semigroup GS (m, n) consisting of all injective linear α: V → V for which codim ran α = n, where dim V = m ≥ n ≥ ℵ0. This is a linear version of the well-known Baer–Levi semigroup BL (p, q) defined on an infinite set X, where |X| = p ≥ q ≥ ℵ0. We show that, although the basic properties of GS (m, n) are the same as those of BL (p, q), the two semigroups are never isomorphic. We also determine all left ideals of GS (m, n) and some of its maximal subsemigroups; in this, we follow previous work on BL (p, q) by Sutov and Sullivan as well as Levi and Wood.


1985 ◽  
Vol 28 (3) ◽  
pp. 319-331 ◽  
Author(s):  
M. A. Reynolds ◽  
R. P. Sullivan

Let X be a set and the semigroup (under composition) of all total transformations from X into itself. In ([6], Theorem 3) Howie characterised those elements of that can be written as a product of idempotents in different from the identity. We gather from review articles that his work was later extended by Evseev and Podran [3, 4] (and independently for finite X by Sullivan [15]) to the semigroup of all partial transformations of X into itself. Howie's result was generalized in a different direction by Kim [8], and it has also been considered in both a topological and a totally ordered setting (see [11] and [14] for brief summaries of this latter work). In addition, Magill [10] investigated the corresponding idea for endomorphisms of a Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear transformations of a finite–dimensional vector space.


1993 ◽  
Vol 45 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Ming–Huat Lim

AbstractLet U be a finite dimensional vector space over an infinite field F. Let U(r) denote the r–th symmetric product space over U. Let T: U(r) → U(s) be a linear transformation which sends nonzero decomposable elements to nonzero decomposable elements. Let dim U ≥ s + 1. Then we obtain the structure of T for the following cases: (I) F is algebraically closed, (II) F is the real field, and (III) T is injective.


1978 ◽  
Vol 30 (6) ◽  
pp. 1228-1242 ◽  
Author(s):  
Vlastimil Dlab ◽  
Claus Michael Ringel

If UR is a real subspace of a finite dimensional vector space VC over the field C of complex numbers, then there exists a basis ﹛e1, … , en﹜ of VG such that


1952 ◽  
Vol 59 (9) ◽  
pp. 650
Author(s):  
R. V. Kadison ◽  
H. L. Hamburger ◽  
M. E. Grimshaw

1983 ◽  
Vol 35 (5) ◽  
pp. 776-806 ◽  
Author(s):  
Carl Herz

It is now customary to give concrete descriptions of the exceptional simple Lie groups of type G2 as groups of automorphisms of the Cayley algebras. There is, however, a more elementary description. Let W be a complex 7-dimensional vector space. Among the alternating 3-forms on W there is a connected dense open subset Ψ(W) of “maximal” forms. If ψ ∈ Ψ(W) then the subgroup of AUTC(W) consisting of the invertible complex-linear transformations S such that ψ(S•, S•, S•) = ψ(•, •, •) is denoted G(ψ), and, in Proposition 3.6. we provewhere G1(ψ) is identified with the exceptional simple complex Lie group of dimension 14. Thus the complex Lie algebra of type G2 is defined in terms of the alternating 3-form ψ alone without the need to specify an invariant quadratic form. In the real case the result is more striking.


Sign in / Sign up

Export Citation Format

Share Document