Finite Projective Planes with Affine Subplanes

1964 ◽  
Vol 7 (4) ◽  
pp. 549-559 ◽  
Author(s):  
T. G. Ostrom ◽  
F. A. Sherk

A well-known theorem, due to R. H. Bruck ([4], p. 398), is the following:If a finite projective plane of order n has a projective subplane of order m < n, then either n = m2 or n > m 2+ m.In this paper we prove an analagous theorem concerning affine subplanes of finite projective planes (Theorem 1). We then construct a number of examples; in particular we find all the finite Desarguesian projective planes containing affine subplanes of order 3 (Theorem 2).

CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


1971 ◽  
Vol 23 (6) ◽  
pp. 1060-1077 ◽  
Author(s):  
William M. Kantor

A unitary polarity of a finite projective plane of order q2 is a polarity θ having q3 + 1 absolute points and such that each nonabsolute line contains precisely q + 1 absolute points. Let G(θ) be the group of collineations of centralizing θ. In [15] and [16], A. Hoffer considered restrictions on G(θ) which force to be desarguesian. The present paper is a continuation of Hoffer's work. The following are our main results.THEOREM I. Let θ be a unitary polarity of a finite projective planeof order q2. Suppose that Γ is a subgroup of G(θ) transitive on the pairs x, X, with x an absolute point and X a nonabsolute line containing x. Thenis desarguesian and Γ contains PSU(3, q).


1970 ◽  
Vol 22 (4) ◽  
pp. 878-880 ◽  
Author(s):  
Judita Cofman

1. An involution of a projective plane π is a collineation X of π such that λ2 = 1. Involutions play an important röle in the theory of finite projective planes. According to Baer [2], an involution λ of a finite projective plane of order n is either a perspectivity, or it fixes a subplane of π of order in the last case, λ is called a Baer involution.While there are many facts known about collineation groups of finite projective planes containing perspectivities (see for instance [4; 5]), the investigation of Baer involutions seems rather difficult. The few results obtained about planes admitting Baer involutions are restricted only to special cases. Our aim in the present paper is to investigate finite projective planes admitting a large number of Baer involutions. It is known (see for instance [3, p. 401]) that in a finite Desarguesian projective plane of square order, the vertices of every quadrangle are fixed by exactly one Baer involution.


2001 ◽  
Vol 25 (12) ◽  
pp. 757-762 ◽  
Author(s):  
Basri Celik

LetΠ=(P,L,I)be a finite projective plane of ordern, and letΠ′=(P′,L′,I′)be a subplane ofΠwith ordermwhich is not a Baer subplane (i.e.,n≥m2+m). Consider the substructureΠ0=(P0,L0,I0)withP0=P\{X∈P|XIl,  l∈L′},L0=L\L′whereI0stands for the restriction ofItoP0×L0. It is shown that everyΠ0is a hyperbolic plane, in the sense of Graves, ifn≥m2+m+1+m2+m+2. Also we give some combinatorial properties of the line classes inΠ0hyperbolic planes, and some relations between its points and lines.


1965 ◽  
Vol 17 ◽  
pp. 977-1009 ◽  
Author(s):  
J. F. Rigby

Let π be a finite projective plane of order n containing a finite projective subplane π* of order u < n. Bruck has shown (1, p. 398) that if π contains a point that does not lie on any line of π*, then n ≥ u2 + u, while if every point of π lies on a line of π* then n = u2.Let π be a finite projective plane of order n containing a finite affine subplane π0 of order m < n.


1967 ◽  
Vol 19 ◽  
pp. 376-393 ◽  
Author(s):  
G. E. Martin

The aim of this paper is to generalize and unify results of B. Qvist, B. Segre, M. Sce, and others concerning arcs in a finite projective plane. The method consists of applying completely elementary combinatorial arguments.To the usual axioms for a projective plane we add the condition that the number of points be finite. Thus there exists an integer n ⩾ 2, called the order of the plane, such that the number of points and the number of lines equal n2 + n + 1 and the number of points on a line and the number of lines through a point equal n + 1. In the following, n will always denote the order of a finite plane. Desarguesian planes of order n, formed by the analytic geometry with coefficients from the Galois field of order n, are examples of finite projective planes. We shall not assume that our planes are Desarguesian, however.


Author(s):  
Alan R. Prince

SynopsisAn analogue of the group algebra of a finite group is defined for any finite projective plane, in the case where the characteristic of the scalar field divides the order of the plane.


10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


1976 ◽  
Vol 41 (2) ◽  
pp. 391-404 ◽  
Author(s):  
J. C. E. Dekker

The main purpose of this paper is to show how partial recursive functions and isols can be used to generalize the following three well-known theorems of combinatorial theory.(I) For every finite projective plane Π there is a unique number n such that Π has exactly n2 + n + 1 points and exactly n2 + n + 1 lines.(II) Every finite projective plane of order n can be coordinatized by a finite planar ternary ring of order n. Conversely, every finite planar ternary ring of order n coordinatizes a finite projective plane of order n.(III) There exists a finite projective plane of order n if and only if there exist n − 1 mutually orthogonal Latin squares of order n.


1957 ◽  
Vol 9 ◽  
pp. 378-388 ◽  
Author(s):  
D. R. Hughes

In (7), Veblen and Wedclerburn gave an example of a non-Desarguesian projective plane of order 9; we shall show that this plane is self-dual and can be characterized by a collineation group of order 78, somewhat like the planes associated with difference sets. Furthermore, the technique used in (7) will be generalized and we will construct a new non-Desarguesian plane of order p2n for every positive integer n and every odd prime p.


Sign in / Sign up

Export Citation Format

Share Document