On the Set of Zero Divisors of a Topological Ring

1967 ◽  
Vol 10 (4) ◽  
pp. 595-596 ◽  
Author(s):  
Kwangil Koh

Let R be a topological (Hausdorff) ring such that for each a ∊ R, aR and Ra are closed subsets of R. We will prove that if the set of non - trivial right (left) zero divisors of R is a non-empty set and the set of all right (left) zero divisors of R is a compact subset of R, then R is a compact ring. This theorem has an interesting corollary. Namely, if R is a discrete ring with a finite number of non - trivial left or right zero divisors then R is a finite ring (Refer [1]).

1971 ◽  
Vol 5 (2) ◽  
pp. 271-274 ◽  
Author(s):  
C. Christensen

It is well-known that every finite ring with non-zero-divisors has order not exceeding the square of the order n of its left zero-divisor set. Unital rings whose order is precisely n2 have been described already. Here we discuss finite rings with relatively larger zero-divisor sets, namely those of order greater than n3/2. This is achieved by describing the class of all finite rings with left composition length two at most, and using a theorem relating the left composition length of a finite ring to the size of its left zero-divisor set.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750164
Author(s):  
E. Hashemi ◽  
A. As. Estaji ◽  
A. Alhevaz

The study of rings with right Property ([Formula: see text]), has done an important role in noncommutative ring theory. Following literature, a ring [Formula: see text] has right Property ([Formula: see text]) if every finitely generated two-sided ideal consisting entirely of left zero-divisors has a nonzero right annihilator. Our results in this paper concerns the right Property ([Formula: see text]) of Ore extensions as well as skew power series rings. We will show that if [Formula: see text] is a right duo ring, then the skew power series ring [Formula: see text] has right Property ([Formula: see text]), when [Formula: see text] is right Noetherian and [Formula: see text]-compatible. Moreover, for a right duo ring [Formula: see text] which is [Formula: see text]-compatible, it is shown that (i) the Ore extension ring [Formula: see text] has right Property ([Formula: see text]) and (ii) [Formula: see text] is right zip if and only if [Formula: see text] is right zip. As a corollary of our results, we provide answers to some open questions related to Property [Formula: see text], raised in [C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, Rings with Property ([Formula: see text]) and their extensions, J. Algebra 315 (2007) 612–628].


1964 ◽  
Vol 157 (3) ◽  
pp. 215-218 ◽  
Author(s):  
N. Ganesan
Keyword(s):  

Author(s):  
Hezron Saka Were ◽  
Maurice Oduor Owino ◽  
Moses Ndiritu Gichuki

In this paper, R is considered a completely primary finite ring and Z(R) is its subset of all zero divisors (including zero), forming a unique maximal ideal. We give a construction of R whose subset of zero divisors Z(R) satisfies the conditions (Z(R))5 = (0); (Z(R))4 ̸= (0) and determine the structures of the unit groups of R for all its characteristics.


1969 ◽  
Vol 6 (03) ◽  
pp. 633-647 ◽  
Author(s):  
Ole Barndorff-Nielsen ◽  
G. F. Yeo

Summary This paper is concerned with negative binomial processes which are essentially mixed Poisson processes whose intensity parameter is given by the sum of squares of a finite number of independently and identically distributed Gaussian processes. A study is made of the distribution of the number of points of a k-dimensional negative binomial process in a compact subset of Rk , and in particular in the case where the underlying Gaussian processes are independent Ornstein-Uhlenbeck processes when more detailed results may be obtained.


1976 ◽  
Vol 15 (3) ◽  
pp. 453-454 ◽  
Author(s):  
D. Handelman ◽  
J. Lawrence

We prove that most group algebras of free products have left zero divisors that are not right zero divisors.


2012 ◽  
Vol 05 (02) ◽  
pp. 1250019 ◽  
Author(s):  
A. S. Kuzmina ◽  
Yu. N. Maltsev

The zero-divisor graph Γ(R) of an associative ring R is the graph whose vertices are all nonzero zero-divisors (one-sided and two-sided) of R, and two distinct vertices x and y are joined by an edge if and only if either xy = 0 or yx = 0. In the present paper, we study some properties of ring varieties where every finite ring is uniquely determined by its zero-divisor graph.


2011 ◽  
Vol 10 (04) ◽  
pp. 741-753 ◽  
Author(s):  
M. BEHBOODI ◽  
Z. RAKEEI

In this paper we continue our study of annihilating-ideal graph of commutative rings, that was introduced in (The annihilating-ideal graph of commutative rings I, to appear in J. Algebra Appl.). Let R be a commutative ring with 𝔸(R) be its set of ideals with nonzero annihilator and Z(R) its set of zero divisors. The annihilating-ideal graph of R is defined as the (undirected) graph 𝔸𝔾(R) that its vertices are 𝔸(R)* = 𝔸(R)\{(0)} in which for every distinct vertices I and J, I — J is an edge if and only if IJ = (0). First, we study the diameter of 𝔸𝔾(R). A complete characterization for the possible diameter is given exclusively in terms of the ideals of R when either R is a Noetherian ring or Z(R) is not an ideal of R. Next, we study coloring of annihilating-ideal graphs. Among other results, we characterize when either χ(𝔸𝔾(R)) ≤ 2 or R is reduced and χ(𝔸𝔾(R)) ≤ ∞. Also it is shown that for each reduced ring R, χ(𝔸𝔾(R)) = cl (𝔸𝔾(R)). Moreover, if χ(𝔸𝔾(R)) is finite, then R has a finite number of minimal primes, and if n is this number, then χ(𝔸𝔾(R)) = cl (𝔸𝔾(R)) = n. Finally, we show that for a Noetherian ring R, cl (𝔸𝔾(R)) is finite if and only if for every ideal I of R with I2 = (0), I has finite number of R-submodules.


Author(s):  
Husam Q. Mohammad ◽  
Nazar H. Shuker ◽  
Luma A. Khaleel

The rings considered in this paper are finite commutative rings with identity, which are not fields. For any ring [Formula: see text] which is not a field and which is not necessarily finite, we denote the set of all zero-divisors of [Formula: see text] by [Formula: see text] and [Formula: see text] by [Formula: see text]. Let [Formula: see text] denote the zero-divisor graph of [Formula: see text] and for a finite ring [Formula: see text], let [Formula: see text] denote the maximum degree of [Formula: see text]. We denote [Formula: see text] by [Formula: see text]. The aim of this paper is to study some properties of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document