A Note on an Oscillation Criterion for an Equation with a Functional Argument

1968 ◽  
Vol 11 (4) ◽  
pp. 593-595 ◽  
Author(s):  
Paul Waltman

It might be thought that, as far as the oscillation of solutions is concerned, the behaviour ofandwould be the same as long as t - α(t) → ∞ as t→∞. To motivate the theorem presented in this note, we show first that this is not the case. Consider the above equation with α(t) = 3t/4, a(t) = l/2t2 i.e.This equation has the non-oscillatory solution y(t) = t1/2 although all solutions ofare oscillatory [1, p. 121].

1986 ◽  
Vol 9 (1) ◽  
pp. 105-109
Author(s):  
Garret J. Etgen ◽  
Willie E. Taylor

This paper establishes an apparently overlooked relationship between the pair of fourth order linear equationsyiv−p(x)y=0andyiv+p(x)y=0, wherepis a positive, continuous function defined on[0,∞). It is shown that if all solutions of the first equation are nonoscillatory, then all solutions of the second equation must be nonoscillatory as well. An oscillation criterion for these equations is also given.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1332 ◽  
Author(s):  
Ábel Garab

We consider linear differential equations with variable delay of the form x ′ ( t ) + p ( t ) x ( t − τ ( t ) ) = 0 , t ≥ t 0 , where p : [ t 0 , ∞ ) → [ 0 , ∞ ) and τ : [ t 0 , ∞ ) → ( 0 , ∞ ) are continuous functions, such that t − τ ( t ) → ∞ (as t → ∞ ). It is well-known that, for the oscillation of all solutions, it is necessary that B : = lim sup t → ∞ A ( t ) ≥ 1 e holds , where A : = ( t ) ∫ t − τ ( t ) t p ( s ) d s . Our main result shows that, if the function A is slowly varying at infinity (in additive form), then under mild additional assumptions on p and τ , condition B > 1 / e implies that all solutions of the above delay differential equation are oscillatory.


1996 ◽  
Vol 39 (3) ◽  
pp. 275-283 ◽  
Author(s):  
J. R. Graef ◽  
C. Qian ◽  
P. W. Spikes

AbstractConsider the delay differential equationwhere α(t) and β(t) are positive, periodic, and continuous functions with period w > 0, and m is a nonnegative integer. We show that this equation has a positive periodic solution x*(t) with period w. We also establish a necessary and sufficient condition for every solution of the equation to oscillate about x*(t) and a sufficient condition for x*(t) to be a global attractor of all solutions of the equation.


1978 ◽  
Vol 25 (2) ◽  
pp. 195-200
Author(s):  
Raymond D. Terry

AbstractFollowing Terry (Pacific J. Math. 52 (1974), 269–282), the positive solutions of eauqtion (E): are classified according to types Bj. We denote A neccessary condition is given for a Bk-solution y(t) of (E) to satisfy y2k(t) ≥ m(t) > 0. In the case m(t) = C > 0, we obtain a sufficient condition for all solutions of (E) to be oscillatory.


2020 ◽  
Vol 104 (560) ◽  
pp. 225-234 ◽  
Author(s):  
S. Northshield

The Lyness equation (1) \begin{equation}{X_{n + 1}} = \frac{{{X_n} + a}}{{{X_{n - 1}}}},\,(a,{x_1},{x_2} > 0)\end{equation} was introduced in 1947 by Lyness [1] and it, and related equations, have long been studied; see [1, 2, 3, 4, 5, 6, 7] and references therein. Perhaps surprisingly, all solutions of (1) are bounded (i.e. for all x1, x2, the set {xn} is bounded) - we will show that below. Furhter, there often exist periodic solutions (i.e. xn = xn+N for all n in which case we say that (xn) has period N). See [8] for a discussion of which periods are possible for a given α. We note that a sequence of period, say, 5 also has periods 10, 15, 20, …. so we use the term minimal period for the smallest positive N such that xn = xn+N for all n.


1992 ◽  
Vol 35 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Ch. G. Philos

Consider the nonautonomous delay logistic difference equationwhere (pn)n≧0 is a sequence of nonnegative numbers, (ln)n≧0 is a sequence of positive integers with limn→∞(n−ln) = ∞ and K is a positive constant. Only solutions which are positive for n≧0 are considered. We established a sharp condition under which all solutions of (E0) are oscillatory about the equilibrium point K. Also we obtained sufficient conditions for the existence of a solution of (E0) which is nonoscillatory about K.


Author(s):  
Ch. G. Philos

SynopsisThis paper deals with the oscillatory and asymptotic behaviour of all solutions of a class of nth order (n > 1) non-linear differential equations with deviating arguments involving the so called nth order r-derivative of the unknown function x defined bywhere r1, (i = 0,1,…, n – 1) are positive continuous functions on [t0, ∞). The results obtained extend and improve previous ones in [7 and 15] even in the usual case where r0 = r1 = … = rn–1 = 1.


1968 ◽  
Vol 11 (5) ◽  
pp. 743-745 ◽  
Author(s):  
T.A. Burton

In [1] Demidovic considered a system of linear differential equationswith A(t) continuous, T-periodic, odd, and skew symmetric. He proved that all solutions of (1) are either T-periodic or 2T-periodic0 In [2] Epstein used Floquet theory to prove that all solutions of (1) are T-periodic without the skew symmetric hypothesis. Epstein's results were then generalized by Muldowney in [7] using Floquet theory. Much of the above work can also be interpreted as being part of the general framework of autosynartetic systems discussed by Lewis in [5] and [6]. According to private correspondence with Lewis it seems that he was aware of these results well before they were published. However, it appears that these theorems were neither stated nor suggested in the papers by Lewis.


1988 ◽  
Vol 40 (6) ◽  
pp. 1301-1314 ◽  
Author(s):  
G. Ladas ◽  
E. C. Partheniadis ◽  
Y. G. Sficas

Consider the second order neutral differential equation1where the coefficients p and q and the deviating arguments τ and σ are real numbers. The characteristic equation of Eq. (1) is2The main result in this paper is the following necessary and sufficient condition for all solutions of Eq. (1) to oscillate.THEOREM. The following statements are equivalent:(a) Every solution of Eq. (1) oscillates.(b) Equation (2) has no real roots.


1972 ◽  
Vol 13 (1) ◽  
pp. 75-79 ◽  
Author(s):  
John S. Bradley

Bellman [1], [2, p. 116] proved that, if all solutions of the equationare in L2, ∞) and b(t) is bounded, then all solutions ofare also in L2(a, ∞). The purpose of this paper is to present conditions on the function f that guarantee that all solutions ofbe in the class L2(a, ∞) whenever all solutions of the equationhave this property. It is assumed that r(t) >0, r and qare continuous on a half line (a, ∞) and f is continuous. Actually the continuity assumptions may be weakened to local integrability and L2 (a, ∞) may be replaced by Lp(a, ∞) for any p > 1.


Sign in / Sign up

Export Citation Format

Share Document