square integrability
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 15)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Alex Mitchell ◽  
Tim R. Morris ◽  
Dalius Stulga

Abstract We study an f(R) approximation to asymptotic safety, using a family of non-adaptive cutoffs, kept general to test for universality. Matching solutions on the four-dimensional sphere and hyperboloid, we prove properties of any such global fixed point solution and its eigenoperators. For this family of cutoffs, the scaling dimension at large n of the nth eigenoperator, is λn ∝ b n ln n. The coefficient b is non-universal, a consequence of the single-metric approximation. The large R limit is universal on the hyperboloid, but not on the sphere where cutoff dependence results from certain zero modes. For right-sign conformal mode cutoff, the fixed points form at most a discrete set. The eigenoperator spectrum is quantised. They are square integrable under the Sturm-Liouville weight. For wrong sign cutoff, the fixed points form a continuum, and so do the eigenoperators unless we impose square-integrability. If we do this, we get a discrete tower of operators, infinitely many of which are relevant. These are f(R) analogues of novel operators in the conformal sector which were used recently to furnish an alternative quantisation of gravity.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Joel Acosta ◽  
Alan Garbarz ◽  
Andrés Goya ◽  
Mauricio Leston

Abstract We continue the study of the one-loop partition function of AdS3 gravity with focus on the square-integrability condition on the fluctuating fields. In a previous work we found that the Brown-Henneaux boundary conditions follow directly from the L2 condition. Here we rederive the partition function as a ratio of Laplacian determinants by performing a suitable decomposition of the metric fluctuations. We pay special attention to the asymptotics of the fields appearing in the partition function. We also show that in the usual computation using ghost fields for the de Donder gauge, such gauge condition is accessible precisely for square-integrable ghost fields. Finally, we compute the spectrum of the relevant Laplacians in thermal AdS3, in particular noticing that there are no isolated eigenvalues, only essential spectrum. This last result supports the analytic continuation approach of David, Gaberdiel and Gopakumar. The purely essential spectra found are consistent with the independent results of Lee and Delay of the essential spectrum of the TT rank-2 tensor Lichnerowickz Laplacian on asymptotically hyperbolic spaces.


2021 ◽  
pp. 344-367
Author(s):  
James Davidson

Mixingales are an asymptotic generalization of the martingale concept. This chapter defines them and reviews their properties, discussing the telescoping sum representation, and the important mixingale inequalities. The most important result for subsequent applications is the uniform square integrability of mixingale sums. The final section proves bounds for the autocovariances of mixingale processes.


2021 ◽  
Vol 82 (7) ◽  
pp. 1233-1247
Author(s):  
A. I. Glushchenko ◽  
V. A. Petrov ◽  
K. A. Lastochkin

2020 ◽  
Vol 57 (1) ◽  
pp. 196-220
Author(s):  
Götz Kersting

AbstractBranching processes $(Z_n)_{n \ge 0}$ in a varying environment generalize the Galton–Watson process, in that they allow time dependence of the offspring distribution. Our main results concern general criteria for almost sure extinction, square integrability of the martingale $(Z_n/\mathrm E[Z_n])_{n \ge 0}$, properties of the martingale limit W and a Yaglom-type result stating convergence to an exponential limit distribution of the suitably normalized population size $Z_n$, conditioned on the event $Z_n \gt 0$. The theorems generalize/unify diverse results from the literature and lead to a classification of the processes.


Sign in / Sign up

Export Citation Format

Share Document