scholarly journals Oscillations in a nonautonomous delay logistic difference equation

1992 ◽  
Vol 35 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Ch. G. Philos

Consider the nonautonomous delay logistic difference equationwhere (pn)n≧0 is a sequence of nonnegative numbers, (ln)n≧0 is a sequence of positive integers with limn→∞(n−ln) = ∞ and K is a positive constant. Only solutions which are positive for n≧0 are considered. We established a sharp condition under which all solutions of (E0) are oscillatory about the equilibrium point K. Also we obtained sufficient conditions for the existence of a solution of (E0) which is nonoscillatory about K.

Author(s):  
Gengping Wei ◽  
Jianhua Shen

We obtain sufficient conditions for oscillation of all solutions of the neutral impulsive difference equation with continuous variableΔτ(y(t)+p(t)y(t−mτ))+Q(t)y(t−lτ)=0,t≥t0−τ,t≠tk,y(tk+τ)−y(tk)=bky(tk),k∈ℕ(1), whereΔτdenotes the forward difference operator, that is,Δτz(t)=z(t+τ)−z(t),p(t)∈C([t0−τ,∞),ℝ),Q(t)∈C([t0−τ,∞),(0,∞)),m,lare positive integers,τ>0andbkare constants,0≤t0<t1<t2<⋯<tk<⋯withlimk→∞tk=∞.


1994 ◽  
Vol 37 (2) ◽  
pp. 178-186
Author(s):  
L. H. Erbe ◽  
H. X. Xia ◽  
J. H. Wu

AbstractSome sufficient conditions are given for all solutions of the nonlinear differential equation y″(x) +p(x)f(y) = 0 to be nonoscillatory, where p is positive andfor a quotient γ of odd positive integers, γ > 1.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Kirill M. Chudinov

Abstract We consider explicit sufficient conditions for all solutions of a first-order linear difference equation with several variable delays and non-negative coefficients to be oscillatory. The conditions have the form of inequalities bounding below the upper and lower limits of the sums of coefficients over a subset of the discrete semiaxis. Our main results are oscillation tests based on a new principle for composing the estimated sums of coefficients. We also give some results in the form of examples, including a counterexample to a wrong oscillation test cited in several recent papers.


2017 ◽  
Vol 14 (1) ◽  
pp. 306-313
Author(s):  
Awad. A Bakery ◽  
Afaf. R. Abou Elmatty

We give here the sufficient conditions on the positive solutions of the difference equation xn+1 = α+M((xn−1)/xn), n = 0, 1, …, where M is an Orlicz function, α∈ (0, ∞) with arbitrary positive initials x−1, x0 to be bounded, α-convergent and the equilibrium point to be globally asymptotically stable. Finally we present the condition for which every positive solution converges to a prime two periodic solution. Our results coincide with that known for the cases M(x) = x in Ref. [3] and M(x) = xk, where k ∈ (0, ∞) in Ref. [7]. We have given the solution of open problem proposed in Ref. [7] about the existence of the positive solution which eventually alternates above and below equilibrium and converges to the equilibrium point. Some numerical examples with figures will be given to show our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Meirong Xu ◽  
Yuzhen Wang

The difference equationyn+1−yn=−αyn+∑j=1mβje−γjyn−kjis studied and some sufficient conditions which guarantee that all solutions of the equation are oscillatory, or that the positive equilibrium of the equation is globally asymptotically stable, are obtained.


In this paper, the authors obtained some new sufficient conditions for the oscillation of all solutions of the fourth order nonlinear difference equation of the form ( ) ( 1 ) 0 3  anxn  pnxn  qn f xn  n = 0,1,2, … ., where an, pn, qn positive sequences. The established results extend, unify and improve some of the results reported in the literature. Examples are provided to illustrate the main result.


2013 ◽  
Vol 44 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Ethiraj Thandapani ◽  
Renu Rama

The objective of this paper is to study the oscillatory and asymptotic properties of third order mixed neutral differential equation of the form $$ (a(t) [x(t) + b(t) x(t - \tau_{1}) + c(t) x(t + \tau_{2})]'')' + q(t) x^{\alpha}(t - \sigma_{1}) + p(t) x^{\beta}(t + \sigma_{2}) = 0 $$where $a(t), b(t), c(t), q(t)$ and $p(t)$ are positive continuous functions, $\alpha$ and $\beta$ are ratios of odd positive integers, $\tau_{1}, \tau_{2}, \sigma_{1}$ and $\sigma_{2}$ are positive constants. We establish some sufficient conditions which ensure that all solutions are either oscillatory or converge to zero. Some examples are provided to illustrate the main results.


2021 ◽  
Vol 71 (1) ◽  
pp. 129-146
Author(s):  
Chittaranjan Behera ◽  
Radhanath Rath ◽  
Prayag Prasad Mishra

Abstract In this article we obtain sufficient conditions for the oscillation of all solutions of the higher-order delay difference equation Δ m ( y n − ∑ j = 1 k p n j y n − m j ) + v n G ( y σ ( n ) ) − u n H ( y α ( n ) ) = f n , $$\begin{array}{} \displaystyle \Delta^{m}\big(y_n-\sum_{j=1}^k p_n^j y_{n-m_j}\big) + v_nG(y_{\sigma(n)})-u_nH(y_{\alpha(n)})=f_n\,, \end{array}$$ where m is a positive integer and Δ xn = x n+1 − xn . Also we obtain necessary conditions for a particular case of the above equation. We illustrate our results with examples for which it seems no result in the literature can be applied.


1978 ◽  
Vol 18 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Mamoru Narita

The oscillation property of the semilinear hyperbolic or ultra-hyperbolic operator L defined byis studied. Sufficient conditions are provided for all solutions of uL[u] ≤ 0 satisfying certain boundary conditions to be oscillatory. The basis of our results is the non-existence of positive solutions of the associated differential inequalities.


Sign in / Sign up

Export Citation Format

Share Document