Remarks Concerning Uniformly Bounded Operators on Hilbert Space

1972 ◽  
Vol 15 (2) ◽  
pp. 215-217 ◽  
Author(s):  
I. Istrǎțescu

In [6] B. Sz.-Nagy has proved that every operator on a Hilbert space such that1is similar to a unitary operator.The following problem is an extension of this result: If T and S are two operators such that1.sup {‖Tn‖, ‖Sn‖}<∞ (n = 0, ±1, ±2,…)2.TS = STthen there exists a selfadjoint operator Q such that QTQ-1, QSQ-1 are unitary operators?Also, in [7] B. Sz.-Nagy has proved that every compact operator T such thatsup ‖Tn‖<∞ (n = 1, 2, 3,…)is similar to a contraction.

2010 ◽  
Vol 88 (2) ◽  
pp. 205-230 ◽  
Author(s):  
CHRISTOPH KRIEGLER ◽  
CHRISTIAN LE MERDY

AbstractLet K be any compact set. The C*-algebra C(K) is nuclear and any bounded homomorphism from C(K) into B(H), the algebra of all bounded operators on some Hilbert space H, is automatically completely bounded. We prove extensions of these results to the Banach space setting, using the key concept ofR-boundedness. Then we apply these results to operators with a uniformly bounded H∞-calculus, as well as to unconditionality on Lp. We show that any unconditional basis on Lp ‘is’ an unconditional basis on L2 after an appropriate change of density.


1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1985 ◽  
Vol 37 (4) ◽  
pp. 664-681 ◽  
Author(s):  
Zoltán Magyar ◽  
Zoltán Sebestyén

The theory of noncommutative involutive Banach algebras (briefly Banach *-algebras) owes its origin to Gelfand and Naimark, who proved in 1943 the fundamental representation theorem that a Banach *-algebra with C*-condition(C*)is *-isomorphic and isometric to a norm-closed self-adjoint subalgebra of all bounded operators on a suitable Hilbert space.At the same time they conjectured that the C*-condition can be replaced by the B*-condition.(B*)In other words any B*-algebra is actually a C*-algebra. This was shown by Glimm and Kadison [5] in 1960.


1968 ◽  
Vol 32 ◽  
pp. 141-153 ◽  
Author(s):  
Masasi Kowada

It is an important problem to determine the spectral type of automorphisms or flows on a probability measure space. We shall deal with a unitary operator U and a 1-parameter group of unitary operators {Ut} on a separable Hilbert space H, and discuss their spectral types, although U and {Ut} are not necessarily supposed to be derived from an automorphism or a flow respectively.


2020 ◽  
Vol 18 (01) ◽  
pp. 1941026 ◽  
Author(s):  
Rinie N. M. Nasir ◽  
Jesni Shamsul Shaari ◽  
Stefano Mancini

Analogous to the notion of mutually unbiased bases for Hilbert spaces, we consider mutually unbiased unitary bases (MUUBs) for the space of operators, [Formula: see text], acting on such Hilbert spaces. The notion of MUUB reflects the equiprobable guesses of unitary operators in one basis of [Formula: see text] when estimating a unitary operator in another. Though, for prime dimension [Formula: see text], the maximal number of MUUBs is known to be [Formula: see text], there is no known recipe for constructing them, assuming they exist. However, one can always construct a minimum of three MUUBs, and the maximal number is approached for very large values of [Formula: see text]. MUUBs can also exist for some [Formula: see text]-dimensional subspace of [Formula: see text] with the maximal number being [Formula: see text].


1977 ◽  
Vol 24 (2) ◽  
pp. 129-138 ◽  
Author(s):  
R. J. Fleming ◽  
J. E. Jamison

AbstractLet Lp(Ω, K) denote the Banach space of weakly measurable functions F defined on a finite measure space and taking values in a separable Hilbert space K for which ∥ F ∥p = ( ∫ | F(ω) |p)1/p < + ∞. The bounded Hermitian operators on Lp(Ω, K) (in the sense of Lumer) are shown to be of the form , where B(ω) is a uniformly bounded Hermitian operator valued function on K. This extends the result known for classical Lp spaces. Further, this characterization is utilized to obtain a new proof of Cambern's theorem describing the surjective isometries of Lp(Ω, K). In addition, it is shown that every adjoint abelian operator on Lp(Ω, K) is scalar.


1974 ◽  
Vol 26 (1) ◽  
pp. 247-250 ◽  
Author(s):  
Joel Anderson

Recently R. G. Douglas showed [4] that if V is a nonunitary isometry and U is a unitary operator (both acting on a complex, separable, infinite dimensional Hilbert space ), then V — K is unitarily equivalent to V ⊕ U (acting on ⊕ ) where K is a compact operator of arbitrarily small norm. In this note we shall prove a much more general theorem which seems to indicate "why" Douglas' theorem holds (and which yields Douglas' theorem as a corollary).


1978 ◽  
Vol 21 (2) ◽  
pp. 143-147
Author(s):  
S. J. Cho

Let be a separable complex infinite dimensional Hilbert space, the algebra of bounded operators in the ideal of compact operators, and the quotient map. Throughout this paper A denotes a separable nuclear C*-algebra with unit. An extension of A is a unital *-monomorphism of A into . Two extensions τ1 and τ2 are strongly (weakly) equivalent if there exists a unitary (Fredholm partial isometry) U in such thatfor all a in A.


1986 ◽  
Vol 38 (5) ◽  
pp. 1135-1148 ◽  
Author(s):  
G. McDonald ◽  
C. Sundberg

Putnam showed in [5] that the spectrum of the real part of a bounded subnormal operator on a Hilbert space is precisely the projection of the spectrum of the operator onto the real line. (In fact he proved this more generally for bounded hyponormal operators.) We will show that this result can be extended to the class of unbounded subnormal operators with bounded real parts.Before proceeding we establish some notation. If T is a (not necessarily bounded) operator on a Hilbert space, then D(T) will denote its domain, and σ(T) its spectrum. For K a subspace of D(T), T|K will denote the restriction of T to K. Norms of bounded operators and elements in Hilbert spaces will be indicated by ‖ ‖. All Hilbert space inner products will be written 〈,〉. If W is a set in C, the closure of W will be written clos W, the topological boundary will be written bdy W, and the projection of W onto the real line will be written π(W),


1986 ◽  
Vol 28 (1) ◽  
pp. 25-30 ◽  
Author(s):  
T. Mazur ◽  
M. Skwarczyński

The Hilbert space methods in the theory of biholomorphic mappings were applied and developed by S. Bergman [1, 2]. In this approach the central role is played by the Hilbert space L2H(D) consisting of all functions which are square integrable and holomorphic in a domain D ⊂ ℂN. A biholomorphic mapping φ:D ⃗ G induces the unitary mapping Uφ:L2H(G) ⃗ L2H(D) defined by the formulaHere ∂φ/∂z denotes the complex Jacobian of φ. The mapping Uϕ is useful, since it permits to replace a problem for D by a problem for its biholomorphic image G (see for example [11], [13]). When ϕ is an automorphism of D we obtain a unitary operator Uϕ on L2H(D).


Sign in / Sign up

Export Citation Format

Share Document