The Group of Units of the Integral Group Ring ZS3

1972 ◽  
Vol 15 (4) ◽  
pp. 529-534 ◽  
Author(s):  
I. Hughes ◽  
K. R. Pearson

We denote by ZG the integral group ring of the finite group G. We call ±g, for g in G, a trivial unit of ZG. For G abelian, Higman [4] (see also [3, p. 262 ff]) showed that every unit of finite order in ZG is trivial. For arbitrary finite G (indeed, for a torsion group G, not necessarily finite), Higman [4] showed that every unit in ZG is trivial if and only if G is(i) abelian and the order of each element divides 4, or(ii) abelian and the order of each element divides 6, or(iii) the direct product of the quaternion group of order 8 and an abelian group of exponent 2.

1974 ◽  
Vol 17 (1) ◽  
pp. 129-130 ◽  
Author(s):  
Gerald Losey

Let G be a group, ZG its integral group ring and U(ZG) the group of units of ZG. The elements ±g∈U(ZG), g∈G, are called the trivial units of ZG. In this note we will proveLet G be a finite group. If ZG contains a non-trivial unit of finite order then it contains infinitely many non-trivial units of finite order.In [1] S. D. Berman has shown that if G is finite then every unit of finite order in ZG is trivial if and only if G is abelian or G is the direct product of a quaternion group of order 8 and an elementary abelian 2-group.


2008 ◽  
Vol 07 (03) ◽  
pp. 393-403 ◽  
Author(s):  
RICHARD M. LOW

Describing the group of units U(ZG) of the integral group ring ZG, for a finite group G, is a classical and open problem. In this paper, it is shown that U(Z[G × Cp]) = M ⋊ U(ZG), a semi-direct product where M is a certain subgroup of U(Z[ζ]G) and p prime. For p = 2, this structure theorem is applied to give precise descriptions of U(ZG) for a non-abelian group G of order 32, G = C10, and G = C8 × C2.


1993 ◽  
Vol 35 (3) ◽  
pp. 367-379 ◽  
Author(s):  
E. Jespers ◽  
M. M. Parmenter

LetGbe a finite group,(ZG) the group of units of the integral group ring ZGand1(ZG) the subgroup of units of augmentation 1. In this paper, we are primarily concerned with the problem of describing constructively(ZG) for particular groupsG.This has been done for a small number of groups (see [11] for an excellent survey), and most recently Jespers and Leal [3] described(ZG) for several 2-groups. While the situation is clear for all groups of order less than 16, not all groups of order 16 were discussed in their paper. Our main aim is to complete the description of(ZG) for all groups of order 16. Since the structure of the unit group of abelian groups is very well known (see for example [10]), we are only interested in the non-abelian case.


1995 ◽  
Vol 47 (1) ◽  
pp. 113-131
Author(s):  
Klaus Hoechsmann

AbstractFor any finite abelian group A, let Ω(A) denote the group of units in the integral group ring which are mapped to cyclotomic units by every character of A. It always contains a subgroup Y(A), of finite index, for which a basis can be systematically exhibited. For A of order pq, where p and q are odd primes, we derive estimates for the index [Ω(A) : Y(A)]. In particular, we obtain conditions for its triviality.


1976 ◽  
Vol 28 (5) ◽  
pp. 954-960 ◽  
Author(s):  
César Polcino Milies

Let R be a ring with unit element and G a finite group. We denote by RG the group ring of the group G over R and by U(RG) the group of units of this group ring.The study of the nilpotency of U(RG) has been the subject of several papers.


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


2012 ◽  
Vol 19 (01) ◽  
pp. 137-148 ◽  
Author(s):  
Qingxia Zhou ◽  
Hong You

For the generalized quaternion group G, this article deals with the problem of presenting the nth power Δn(G) of the augmentation ideal Δ (G) of the integral group ring ZG. The structure of Qn(G)=Δn(G)/Δn+1(G) is obtained.


1969 ◽  
Vol 1 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Raymond G. Ayoub ◽  
Christine Ayoub

The group ring of a finite abelian group G over the field of rational numbers Q and over the rational integers Z is studied. A new proof of the fact that the group ring QG is a direct sum of cyclotomic fields is given – without use of the Maschke and Wedderburn theorems; it is shown that the projections of QG onto these fields are determined by the inequivalent characters of G. It is proved that the group of units of ZG is a direct product of a finite group and a free abelian group F and the rank of F is determined. A formula for the orthogonal idempotents of QG is found.


2011 ◽  
Vol 21 (04) ◽  
pp. 531-545 ◽  
Author(s):  
JAIRO Z. GONÇALVES ◽  
ÁNGEL DEL RÍO

Marciniak and Sehgal showed that if u is a non-trivial bicyclic unit of an integral group ring then there is a bicyclic unit v such that u and v generate a non-abelian free group. A similar result does not hold for Bass cyclic units of infinite order based on non-central elements as some of them have finite order modulo the center. We prove a theorem that suggests that this is the only limitation to obtain a non-abelian free group from a given Bass cyclic unit. More precisely, we prove that if u is a Bass cyclic unit of an integral group ring ℤG of a solvable and finite group G, such that u has infinite order modulo the center of U(ℤG) and it is based on an element of prime order, then there is a non-abelian free group generated by a power of u and a power of a unit in ℤG which is either a Bass cyclic unit or a bicyclic unit.


Sign in / Sign up

Export Citation Format

Share Document