Weakly Regular Rings

1973 ◽  
Vol 16 (3) ◽  
pp. 317-321 ◽  
Author(s):  
V. S. Ramamurthi

This paper attempts to generalize a property of regular rings, namely,I2=I for every right (left) ideal. Rings with this property are called right (left) weakly regular. A ring which is both left and right weakly regular is called weakly regular. Kovacs in [6] proved that, for commutative rings, weak regularity and regularity are equivalent conditions and left open the question whether for arbitrary rings the two conditions are equivalent. We show in §1 that, in general weak regularity does not imply regularity. In fact, the class of weakly regular rings strictly contains the class of regular rings as well as the class of biregular rings.

2018 ◽  
Vol 17 (04) ◽  
pp. 1850075 ◽  
Author(s):  
M. Alkan ◽  
W. K. Nicholson ◽  
A. Ç. Özcan

A ring [Formula: see text] is called left comorphic if, for each [Formula: see text] there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] Examples include (von Neumann) regular rings, and [Formula: see text] for a prime [Formula: see text] and [Formula: see text] One motivation for studying these rings is that the comorphic rings (left and right) are just the quasi-morphic rings, where [Formula: see text] is left quasi-morphic if, for each [Formula: see text] there exist [Formula: see text] and [Formula: see text] in [Formula: see text] such that [Formula: see text] and [Formula: see text] If [Formula: see text] here the ring is called left morphic. It is shown that [Formula: see text] is left comorphic if and only if, for any finitely generated left ideal [Formula: see text] there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] Using this, we characterize when a left comorphic ring has various properties, and show that if [Formula: see text] is local with nilpotent radical, then [Formula: see text] is left comorphic if and only if it is right comorphic. We also show that a semiprime left comorphic ring [Formula: see text] is semisimple if either [Formula: see text] is left perfect or [Formula: see text] has the ACC on [Formula: see text] After a preliminary study of left comorphic rings with the ACC on [Formula: see text] we show that a quasi-Frobenius ring is left comorphic if and only if every right ideal is principal; if and only if every left ideal is a left principal annihilator. We characterize these rings as follows: The following are equivalent for a ring [Formula: see text] [Formula: see text] is quasi-Frobenius and left comorphic. [Formula: see text] is left comorphic, left perfect and right Kasch. [Formula: see text] is left comorphic, right Kasch, with the ACC on [Formula: see text] [Formula: see text] is left comorphic, left mininjective, with the ACC on [Formula: see text] Some examples of these rings are given.


2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


1980 ◽  
Vol 23 (2) ◽  
pp. 173-178 ◽  
Author(s):  
S. S. Page

Let R be an associative ring with identity. If R is von- Neumann regular of a left v-ring, then for each left ideal, I, we have I2 = I. In this note we study rings such that for each left ideal L there exists an integer n = n(L)>0 such that Ln = Ln+1. We call such rings stable rings. We completely describe the stable commutative rings. These descriptions give rise to concepts related to, but more general than, finite Goldie dimension and T-nilpotence, and a notion of power pure.


2007 ◽  
Vol 06 (04) ◽  
pp. 671-685 ◽  
Author(s):  
K. VARADARAJAN

We give a complete characterization of the class of commutative rings R possessing the property that Spec(R) is weakly 0-dimensional. They turn out to be the same as strongly π-regular rings. We considerably strengthen the results of K. Samei [13] tying up cleanness of R with the zero dimensionality of Max(R) in the Zariski topology. In the class of rings C(X), W. Wm Mc Govern [6] has characterized potent rings as the ones with X admitting a clopen π-base. We prove the analogous result for any commutative ring in terms of the Zariski topology on Max(R). Mc Govern also introduced the concept of an almost clean ring and proved that C(X) is almost clean if and only if it is clean. We prove a similar result for all Gelfand rings R with J(R) = 0.


2019 ◽  
Vol 19 (06) ◽  
pp. 2050101
Author(s):  
M. H. Hooshmand

This paper is the first step of a new topic about groups which has close relations and applications to number theory. Considering the factorization of a group into a direct product of two subsets, and since every subgroup is a left and right factor, we observed that the index conception can be generalized for a class of factors. But, thereafter, we found that every subset [Formula: see text] of a group [Formula: see text] has four related sub-indexes: right, left, upper and lower sub-indexes [Formula: see text], [Formula: see text] which agree with the conception index of subgroups, and all of them are equal if [Formula: see text] is a subgroup or normal sub-semigroup of [Formula: see text]. As a result of the topic, we introduce some equivalent conditions to a famous conjecture for prime numbers (“every even number is the difference of two primes”) that one of them is: the prime numbers set is index stable (i.e. all of its sub-indexes are equal) in integers and [Formula: see text]. Index stable groups (i.e. those whose subsets are all index stable) are a challenging subject of the topic with several results and ideas. Regarding the extension of the theory, we give some methods for evaluation of sub-indexes, by using the left and right differences of subsets. At last, we pose many open problems, questions, a proposal for additive number theory, and show some future directions of researches and projects for the theory.


2015 ◽  
Vol 14 (05) ◽  
pp. 1550068
Author(s):  
Papiya Bhattacharjee ◽  
Michelle L. Knox

Essential extensions and p-extensions have been studied for commutative rings with identity in various papers, such as [P. Bhattacharjee, M. L. Knox and W. Wm. McGovern, p-Extensions, Proceedings for the OSU-Denison Conference, AMS series Contemporary Mathematics Series (to appear); p-Embeddings, Topology Appl. 160(13) (2013) 1566–1576; R. M. Raphael, Algebraic Extensions of Commutative Regular Rings, Canad. J. Math. 22(6) (1970) 1133–1155]. The present paper applies these concepts to certain subrings of C(X). Moreover, the paper introduces a new ring extension, called a pg-extension, and determines its relation to both essential extension and p-extension. It turns out that the pg-extension R ↪ S induces a well-defined contraction map between principal ideals [Formula: see text] and [Formula: see text].


1960 ◽  
Vol 17 ◽  
pp. 167-170 ◽  
Author(s):  
Shizuo Endo

A ring R is called, according to [2], a left p.p. ring if any principal left ideal of R is projective. A ring which is left and right p.p. is called a p.p. ring.In this short note we shall give some additional remarks to A. Hattori [2]. In Proposition 1 we shall give a characterization of commutative p.p. rings, and in Proposition 3 we shall give a generalization of Proposition 17 and 18 in [2], which shows also that the modified torsion theory over commutative p.p. rings coincides with the usual torsion theory.


2007 ◽  
Vol 06 (05) ◽  
pp. 789-799 ◽  
Author(s):  
V. CAMILLO ◽  
W. K. NICHOLSON

A ring R is called left morphic if R/Ra ≅ l (a) for each a ∈ R, equivalently if there exists b ∈ R such that Ra = l (b) and l (a) = Rb. In this paper, we ask only that b and c exist such that Ra = l (b) and l (a) = Rc, and call R left quasi-morphic if this happens for every element a of R. This class of rings contains the regular rings and the left morphic rings, and it is shown that finite intersections of principal left ideals in such a ring are again principal. It is further proved that if R is quasi-morphic (left and right), then R is a Bézout ring and has the ACC on principal left ideals if and only if it is an artinian principal ideal ring.


1995 ◽  
Vol 37 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Hua-Ping Yu

Bass [1] proved that if R is a left perfect ring, then R contains no infinite sets of orthogonal idempotents and every nonzero left R-module has a maximal submodule, and asked if this property characterizes left perfect rings ([1], Remark (ii), p. 470). The fact that this is true for commutative rings was proved by Hamsher [12], and that this is not true in general was demonstrated by examples of Cozzens [7] and Koifman [14]. Hamsher's result for commutative rings has been extended to some noncommutative rings. Call a ring left duo if every left ideal is two-sided; Chandran [5] proved that Bass’ conjecture is true for left duo rings. Call a ring R weakly left duo if for every r ε R, there exists a natural number n(r) (depending on r) such that the principal left ideal Rrn(r) is two-sided. Recently, Xue [21] proved that Bass’ conjecture is still true for weakly left duo rings.


Sign in / Sign up

Export Citation Format

Share Document