pg-Extensions and p-Extensions with applications to C(X)

2015 ◽  
Vol 14 (05) ◽  
pp. 1550068
Author(s):  
Papiya Bhattacharjee ◽  
Michelle L. Knox

Essential extensions and p-extensions have been studied for commutative rings with identity in various papers, such as [P. Bhattacharjee, M. L. Knox and W. Wm. McGovern, p-Extensions, Proceedings for the OSU-Denison Conference, AMS series Contemporary Mathematics Series (to appear); p-Embeddings, Topology Appl. 160(13) (2013) 1566–1576; R. M. Raphael, Algebraic Extensions of Commutative Regular Rings, Canad. J. Math. 22(6) (1970) 1133–1155]. The present paper applies these concepts to certain subrings of C(X). Moreover, the paper introduces a new ring extension, called a pg-extension, and determines its relation to both essential extension and p-extension. It turns out that the pg-extension R ↪ S induces a well-defined contraction map between principal ideals [Formula: see text] and [Formula: see text].

2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2021 ◽  
Author(s):  
Masoud Haveshki

Abstract We define the essential extension of a filter in the residuated lattice A associated to an ideal of L(A) and investigate its related properties. We prove the residuated lattice A is a Boolean algebra, G(RL)-algebra or MV -algebra if and only if the essential extension of {1} associated to A \ P is a Boolean filter, G-filter or MV -filter (for all P ∈ SpecA), respectively. Also, some properties of lattice of essential extensions are studied.


1982 ◽  
Vol 34 (1) ◽  
pp. 23-30
Author(s):  
S. K. Berberian

Factor-correspondences are nothing more than a way of describing isomorphisms between principal ideals in a regular ring. However, due to a remarkable decomposition theorem of M. J. Wonenburger [7, Lemma 1], they have proved to be a highly effective tool in the study of completeness properties in matrix rings over regular rings [7, Theorem 1]. Factor-correspondences also figure in the proof of D. Handelman's theorem that an ℵ0-continuous regular ring is unitregular [4, Theorem 3.2].The aim of the present article is to sharpen the main result in [7] and to re-examine its applications to matrix rings. The basic properties of factor-correspondences are reviewed briefly for the reader's convenience.Throughout, R denotes a regular ring (with unity).Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence in R is a right R-isomorphism φ : J → K, where J and K are principal right ideals of R (left factor-correspondences are defined dually).


2010 ◽  
Vol 83 (2) ◽  
pp. 329-337 ◽  
Author(s):  
R. R. ANDRUSZKIEWICZ

AbstractThe main purpose of this paper is to give a new, elementary proof of Flanigan’s theorem, which says that a given ring A has a maximal essential extension ME(A) if and only if the two-sided annihilator of A is zero. Moreover, we discuss the problem of description of ME(A) for a given right ideal A of a ring with an identity.


2007 ◽  
Vol 06 (04) ◽  
pp. 671-685 ◽  
Author(s):  
K. VARADARAJAN

We give a complete characterization of the class of commutative rings R possessing the property that Spec(R) is weakly 0-dimensional. They turn out to be the same as strongly π-regular rings. We considerably strengthen the results of K. Samei [13] tying up cleanness of R with the zero dimensionality of Max(R) in the Zariski topology. In the class of rings C(X), W. Wm Mc Govern [6] has characterized potent rings as the ones with X admitting a clopen π-base. We prove the analogous result for any commutative ring in terms of the Zariski topology on Max(R). Mc Govern also introduced the concept of an almost clean ring and proved that C(X) is almost clean if and only if it is clean. We prove a similar result for all Gelfand rings R with J(R) = 0.


2011 ◽  
Vol 10 (02) ◽  
pp. 335-356 ◽  
Author(s):  
DAVID E. DOBBS ◽  
JAY SHAPIRO

Results of Davis on normal pairs (R, T) of domains are generalized to (commutative) rings with nontrivial zero-divisors, particularly complemented rings. For instance, if T is a ring extension of an almost quasilocal complemented ring R, then (R, T) is a normal pair if and only if there is a prime ideal P of R such that T = R[P], R/P is a valuation domain and PT = P. Examples include sufficient conditions for the "normal pair" property to be stable under formation of infinite products and ⋈ constructions.


1973 ◽  
Vol 16 (3) ◽  
pp. 317-321 ◽  
Author(s):  
V. S. Ramamurthi

This paper attempts to generalize a property of regular rings, namely,I2=I for every right (left) ideal. Rings with this property are called right (left) weakly regular. A ring which is both left and right weakly regular is called weakly regular. Kovacs in [6] proved that, for commutative rings, weak regularity and regularity are equivalent conditions and left open the question whether for arbitrary rings the two conditions are equivalent. We show in §1 that, in general weak regularity does not imply regularity. In fact, the class of weakly regular rings strictly contains the class of regular rings as well as the class of biregular rings.


Author(s):  
Ece Yetkin Celikeli ◽  
Hani Khashan

Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. The purpose of this paper is to introduce the concept of weakly S-primary ideals as a new generalization of weakly primary ideals. An ideal I of R disjoint with S is called a weakly S-primary ideal if there exists s∈S such that whenever 0≠ab∈I for a,b∈R, then sa∈√I or sb∈I. The relationships among S-prime, S-primary, weakly S-primary and S-n-ideals are investigated. For an element r in any general ZPI-ring, the (weakly) S_{r}-primary ideals are charctarized where S={1,r,r²,⋯}. Several properties, characterizations and examples concerning weakly S-primary ideals are presented. The stability of this new concept with respect to various ring-theoretic constructions such as the trivial ring extension and the amalgamation of rings along an ideal are studied. Furthermore, weakly S-decomposable ideals and S-weakly Laskerian rings which are generalizations of S-decomposable ideals and S-Laskerian rings are introduced.


1989 ◽  
Vol 32 (3) ◽  
pp. 333-339 ◽  
Author(s):  
Gary F. Birkenmeier

AbstractA ring R is said to be generated by faithful right cyclics (right finitely pseudo-Frobenius), denoted by GFC (FPF), if every faithful cyclic (finitely generated) right R-module generates the category of right R-modules. The class of right GFC rings includes right FPF rings, commutative rings (thus every ring has a GFC subring - its center), strongly regular rings, and continuous regular rings of bounded index. Our main results are: (1) a decomposition of a semi-prime quasi-Baer right GFC ring (e.g., a semiprime right FPF ring) is achieved by considering the set of nilpotent elements and the centrality of idempotnents; (2) a generalization of S. Page's decomposition theorem for a right FPF ring.


1985 ◽  
Vol 50 (4) ◽  
pp. 1025-1043 ◽  
Author(s):  
Paul C. Eklof ◽  
Hans-Christian Mez

Throughout this paper, ⊿ will denote a commutative ring with multiplicative identity, 1. The algebras we consider will be associative ⊿-algebras which are not necessarily commutative and do not necessarily contain a multiplicative identity. By standard methods, every ⊿-algebra can be embedded in an existentially closed (e.c.) Δ-algebra—and even in one which is existentially universal (e.u.). (See §0 for more details.)We shall be studying the ideals of e.c. ⊿-algebras. Since every ideal is a sum of principal ideals, a natural place to begin is with principal ideals. In §1 we show that for an algebraically closed (a.c.) ⊿-algebra A, and elements a, b in A, whether or not b belongs to the principal ideal (a)A generated by a, depends only on the underlying ⊿-module structure of A; more precisely, for b to belong to (a)A it is necessary and sufficient that b satisfies every positive existential formula θ(ν) in the language of ⊿-modules which is satisfied by a (cf. Corollary 1.8). For special classes of rings ⊿ this condition can be simplified (Proposition 1.10): e.g. for Prüfer rings it is enough to consider formulas of the form ∃x(λx = μν); and for regular rings it is enough to consider formulas μν = 0 (where λ, μ ∈ ⊿).In §2 we use the results of §1 to study e.c. and e.u. algebras over a principal ideal domain (p.i.d.) ⊿ (Note that for ⊿ = Z this includes the case of e.c. rings.) We obtain a necessary and sufficient condition for an a.c. ⊿-algebra to be e.c. (Theorem 2.4). We also show (Theorem 2.2) that in an a.c. ⊿-algebra A every element that is divisible by all nonzero elements of ⊿ belongs to the divisible part D(A) of A. (It should be noted that, while a.c. ⊿-modules are always divisible [ES], an e.c. ⊿-algebra is never divisible: see the end of §0. Moreover, an e.c. ⊿-algebra always contains torsion-free elements: see Remark 2.3.) We prove that every bounded ideal in an a.c. ⊿-algebra is principal (2.7).


Sign in / Sign up

Export Citation Format

Share Document