Non-Uniqueness of The Solution to a Generalized Dirichlet Problem

1974 ◽  
Vol 17 (4) ◽  
pp. 605-606
Author(s):  
E. L. Koh

It is generally known [1] that the singular partial differential equationmay not have a unique solution because of the existence of nontrivial representations of zero.1

1980 ◽  
Vol 87 (3) ◽  
pp. 515-521
Author(s):  
Albert E. Heins

In a recent paper, hereafter referred to as I (1) we derived two alternate forms for the fundamental solution of the axially symmetric wave equation. We demonstrated that for α > 0, the fundamental solution (the so-called free space Green's function) of the partial differential equationcould be written asif b > rorif r > b.


1922 ◽  
Vol 41 ◽  
pp. 76-81
Author(s):  
E. T. Copson

Riemann's method of solution of a linear second order partial differential equation of hyperbolic type was introduced in his memoir on sound waves. It has been used by Darboux in discussing the equationwhere α, β, γ are functions of x and y.


1959 ◽  
Vol 11 ◽  
pp. 148-155 ◽  
Author(s):  
Louis Weisner

On replacing the parameter n in Bessel's differential equation1.1by the operator y(∂/∂y), the partial differential equation Lu = 0 is constructed, where1.2This operator annuls u(x, y) = v(x)yn if, and only if, v(x) satisfies (1.1) and hence is a cylindrical function of order n. Thus every generating function of a set of cylindrical functions is a solution of Lu = 0.It is shown in § 2 that the partial differential equation Lu = 0 is invariant under a three-parameter Lie group. This group is then applied to the systematic determination of generating functions for Bessel functions, following the methods employed in two previous papers (4; 5).


1972 ◽  
Vol 15 (2) ◽  
pp. 229-234
Author(s):  
Julius A. Krantzberg

We consider the initial-boundary value problem for the parabolic partial differential equation1.1in the bounded domain D, contained in the upper half of the xy-plane, where a part of the x-axis lies on the boundary B(see Fig.1).


1956 ◽  
Vol 8 ◽  
pp. 203-219 ◽  
Author(s):  
G. F. D. Duff

1. Introduction. The quasi-linear elliptic partial differential equation to be studied here has the form(1.1) Δu = − F(P,u).Here Δ is the Laplacian while F(P,u) is a continuous function of a point P and the dependent variable u. We shall study the Dirichlet problem for (1.1) and will find that the usual formulation must be modified by the inclusion of a parameter in the data or the differential equation, together with a further numerical condition on the solution.


1947 ◽  
Vol 43 (3) ◽  
pp. 348-359 ◽  
Author(s):  
F. G. Friedlander

The ordinary one-dimensional wave equationhas special integrals of the formwhich satisfy the first-order equationsrespectively, and are often called progressive waves, or progressive integrals, of (1·1). The straight linesin an xt-plane are the characteristics of (1·1). It follows from (1·2) that progressive integrals of (1·1) are constant on some particular characteristic, and are characterized by this property.


1979 ◽  
Vol 20 (1) ◽  
pp. 1-14 ◽  
Author(s):  
D. Naylor

In this paper the author continues the search for a suitable integral transform that can be applied to certain boundary value problems involving the Helmholtz equation and the condition of radiation. The transform in question must be capable of eliminating the r-dependence appearing in the partial differential equation


Sign in / Sign up

Export Citation Format

Share Document