A Decomposition of Rings Generated by Faithful Cyclic Modules

1989 ◽  
Vol 32 (3) ◽  
pp. 333-339 ◽  
Author(s):  
Gary F. Birkenmeier

AbstractA ring R is said to be generated by faithful right cyclics (right finitely pseudo-Frobenius), denoted by GFC (FPF), if every faithful cyclic (finitely generated) right R-module generates the category of right R-modules. The class of right GFC rings includes right FPF rings, commutative rings (thus every ring has a GFC subring - its center), strongly regular rings, and continuous regular rings of bounded index. Our main results are: (1) a decomposition of a semi-prime quasi-Baer right GFC ring (e.g., a semiprime right FPF ring) is achieved by considering the set of nilpotent elements and the centrality of idempotnents; (2) a generalization of S. Page's decomposition theorem for a right FPF ring.

1971 ◽  
Vol 4 (1) ◽  
pp. 57-62 ◽  
Author(s):  
K. M. Rangaswamy ◽  
N. Vanaja

It is shown that a von Neumann regular ring R is left seif-injective if and only if every finitely generated torsion-free left R-module is projective. It is further shown that a countable self-injective strongly regular ring is Artin semi-simple.


Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

AbstractA module M is called $$\mathfrak {s}$$ s -coseparable if for every nonzero submodule U of M such that M/U is finitely generated, there exists a nonzero direct summand V of M such that $$V \subseteq U$$ V ⊆ U and M/V is finitely generated. It is shown that every non-finitely generated free module is $$\mathfrak {s}$$ s -coseparable but a finitely generated free module is not, in general, $$\mathfrak {s}$$ s -coseparable. We prove that the class of $$\mathfrak {s}$$ s -coseparable modules over a right noetherian ring is closed under finite direct sums. We show that the class of commutative rings R for which every cyclic R-module is $$\mathfrak {s}$$ s -coseparable is exactly that of von Neumann regular rings. Some examples of modules M for which every direct summand of M is $$\mathfrak {s}$$ s -coseparable are provided.


2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


Author(s):  
HERVÉ PERDRY ◽  
PETER SCHUSTER

We give a constructive proof showing that every finitely generated polynomial ideal has a Gröbner basis, provided the ring of coefficients is Noetherian in the sense of Richman and Seidenberg. That is, we give a constructive termination proof for a variant of the well-known algorithm for computing the Gröbner basis. In combination with a purely order-theoretic result we have proved in a separate paper, this yields a unified constructive proof of the Hilbert basis theorem for all Noether classes: if a ring belongs to a Noether class, then so does the polynomial ring. Our proof can be seen as a constructive reworking of one of the classical proofs, in the spirit of the partial realisation of Hilbert's programme in algebra put forward by Coquand and Lombardi. The rings under consideration need not be commutative, but are assumed to be coherent and strongly discrete: that is, they admit a membership test for every finitely generated ideal. As a complement to the proof, we provide a prime decomposition for commutative rings possessing the finite-depth property.


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


1983 ◽  
Vol 6 (1) ◽  
pp. 119-124
Author(s):  
Hazar Abu-Khuzam ◽  
Adil Yaqub

LetRbe a ring and letNdenote the set of nilpotent elements ofR. LetZdenote the center ofR. Suppose that (i)Nis commutative, (ii) for everyxinRthere existsx′ϵ<x>such thatx−x2x′ϵN, where<x>denotes the subring generated byx, (iii) for everyx,yinR, there exists an integern=n(x,y)≥1such that both(xy)n−(yx)nand(xy)n+1−(yx)n+1belong toZ. ThenRis commutative and, in fact,Ris isomorphic to a subdirect sum of nil commutative rings and local commutative rings. It is further shown that both conditions in hypothesis (iii) are essential. The proof uses the structure theory of rings along with some earlier results of the authors.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


1964 ◽  
Vol 40 (2) ◽  
pp. 74-75
Author(s):  
Jiang Luh

Sign in / Sign up

Export Citation Format

Share Document