Differential Equation for Classical-Type Orthogonal Polynomials

1989 ◽  
Vol 32 (4) ◽  
pp. 404-411 ◽  
Author(s):  
A. Ronveaux ◽  
F. Marcellan

AbstractThe second order differential equation of Littlejohn-Shore for Laguerre type orthogonal polynomials is generalized in two ways. First the positive Dirac mass can be situated at any point and secondly the weight can be any classical weight modified by an arbitrary number of Dirac distributions.

2004 ◽  
Vol 2004 (2) ◽  
pp. 137-167 ◽  
Author(s):  
P. Maroni ◽  
M. Ihsen Tounsi

The aim of this work is to describe the orthogonal polynomials sequences which are identical to their second associated sequence. The resulting polynomials are semiclassical of classs≤3. The characteristic elements of the structure relation and of the second-order differential equation are given explicitly. Integral representations of the corresponding forms are also given. A striking particular case is the case of the so-called electrospheric polynomials.


1995 ◽  
Vol 37 (1) ◽  
pp. 105-113 ◽  
Author(s):  
R. G. Campos ◽  
L. A. Avila

In the last few years, there has been considerable interest in the properties of orthogonal polynomials satisfying differential equations (DE) of order greater than two, their connection to singular boundary value problems, their generalizations, and their classification as solutions of second order DE (see for instance [2–8]). In this last interesting problem, some known facts about the classical orthogonal polynomials can be incorporated to connect these two sets of families and yield some nontrivial results in a very simple way. In this paper we only work with the nonclassical Jacobi type, Laguerre type and Legendre type polynomials, and we show how they can be connected with the classical Jacobi, Laguerre and Legendre polynomials, respectively; at the same time we obtain certain bounds for the zeros of the first ones by using a system of nonlinear equations satisfied by the zeros of any polynomial solution of a second order differential equation which, for the classical polynomials is known since Stieltjes and concerns the electrostatic interpretation of the zeros [10, Section 6.7; 9,1]. We also correct an expression for the second order differential equation of the Legendre type polynomials that circulates through the literature.


1931 ◽  
Vol 27 (4) ◽  
pp. 546-552 ◽  
Author(s):  
E. C. Bullard ◽  
P. B. Moon

A mechanical method of integrating a second-order differential equation, with any boundary conditions, is described and its applications are discussed.


2018 ◽  
Vol 24 (2) ◽  
pp. 127-137
Author(s):  
Jaume Llibre ◽  
Ammar Makhlouf

Abstract We provide sufficient conditions for the existence of periodic solutions of the second-order differential equation with variable potentials {-(px^{\prime})^{\prime}(t)-r(t)p(t)x^{\prime}(t)+q(t)x(t)=f(t,x(t))} , where the functions {p(t)>0} , {q(t)} , {r(t)} and {f(t,x)} are {\mathcal{C}^{2}} and T-periodic in the variable t.


Sign in / Sign up

Export Citation Format

Share Document