Determining Units in Some Integral Group Rings

1990 ◽  
Vol 33 (2) ◽  
pp. 242-246 ◽  
Author(s):  
E. G. Goodaire ◽  
E. Jespers ◽  
M. M. Parmenter

In this brief note, we will show how in principle to find all units in the integral group ring ZG, whenever G is a finite group such that and Z(G) each have exponent 2, 3, 4 or 6. Special cases include the dihedral group of order 8, whose units were previously computed by Polcino Milies [5], and the group discussed by Ritter and Sehgal [6]. Other examples of noncommutative integral group rings whose units have been computed include , but in general very little progress has been made in this direction. For basic information on units in group rings, the reader is referred to Sehgal [7].


1976 ◽  
Vol 28 (5) ◽  
pp. 954-960 ◽  
Author(s):  
César Polcino Milies

Let R be a ring with unit element and G a finite group. We denote by RG the group ring of the group G over R and by U(RG) the group of units of this group ring.The study of the nilpotency of U(RG) has been the subject of several papers.



2017 ◽  
Vol 16 (02) ◽  
pp. 1750025 ◽  
Author(s):  
Jinke Hai ◽  
Shengbo Ge ◽  
Weiping He

Let [Formula: see text] be a finite group and let [Formula: see text] be the holomorph of [Formula: see text]. If [Formula: see text] is a finite nilpotent group or a symmetric group [Formula: see text] of degree [Formula: see text], then the normalizer property holds for [Formula: see text].



2018 ◽  
Vol 25 (02) ◽  
pp. 181-188 ◽  
Author(s):  
Jinke Hai ◽  
Yixin Zhu

Let G be an extension of a finite quasinilpotent group by a finite group. It is shown that under some conditions every Coleman automorphism of G is an inner automorphism. The interest in such automorphisms arose from the study of the normalizer problem for integral group rings. Our theorems generalize some well-known results.



1993 ◽  
Vol 35 (3) ◽  
pp. 367-379 ◽  
Author(s):  
E. Jespers ◽  
M. M. Parmenter

LetGbe a finite group,(ZG) the group of units of the integral group ring ZGand1(ZG) the subgroup of units of augmentation 1. In this paper, we are primarily concerned with the problem of describing constructively(ZG) for particular groupsG.This has been done for a small number of groups (see [11] for an excellent survey), and most recently Jespers and Leal [3] described(ZG) for several 2-groups. While the situation is clear for all groups of order less than 16, not all groups of order 16 were discussed in their paper. Our main aim is to complete the description of(ZG) for all groups of order 16. Since the structure of the unit group of abelian groups is very well known (see for example [10]), we are only interested in the non-abelian case.



2008 ◽  
Vol 51 (2) ◽  
pp. 363-385 ◽  
Author(s):  
Martin Hertweck

AbstractIt is shown that any torsion unit of the integral group ring $\mathbb{Z}G$ of a finite group $G$ is rationally conjugate to an element of $\pm G$ if $G=XA$ with $A$ a cyclic normal subgroup of $G$ and $X$ an abelian group (thus confirming a conjecture of Zassenhaus for this particular class of groups, which comprises the class of metacyclic groups).



2006 ◽  
Vol 13 (02) ◽  
pp. 329-348 ◽  
Author(s):  
Martin Hertweck

It is shown that any torsion unit of the integral group ring ℤG of a finite group G is rationally conjugate to a trivial unit if G = P ⋊ A with P a normal Sylow p-subgroup of G and A an abelian p′-group (thus confirming a conjecture of Zassenhaus for this particular class of groups). The proof is an application of a fundamental result of Weiss. It is also shown that the Zassenhaus conjecture holds for PSL(2,7), the finite simple group of order 168.



1990 ◽  
Vol 42 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Frank Röhl

In [5], Roggenkamp and Scott gave an affirmative answer to the isomorphism problem for integral group rings of finite p-groups G and H, i.e. to the question whether ZG ⥲ ZH implies G ⥲ H (in this case, G is said to be characterized by its integral group ring). Progress on the analogous question with Z replaced by the field Fp of p elements has been very little during the last couple of years; and the most far reaching result in this area in a certain sense - due to Passi and Sehgal, see [8] - may be compared to the integral case, where the group G is of nilpotency class 2.



2011 ◽  
Vol 10 (04) ◽  
pp. 711-725 ◽  
Author(s):  
J. Z. GONÇALVES ◽  
D. S. PASSMAN

Let ℤG be the integral group ring of the finite nonabelian group G over the ring of integers ℤ, and let * be an involution of ℤG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (uk, m(x), uk, m(x*)) or (uk, m(x), uk, m(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ℤG.



Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.



1991 ◽  
Vol 14 (1) ◽  
pp. 149-153
Author(s):  
George Szeto ◽  
Linjun Ma

LetAbe a ring with1,Cthe center ofAandG′an inner automorphism group ofAinduced by {Uαin​A/αin a finite groupGwhose order is invertible}. LetAG′be the fixed subring ofAunder the action ofG′.IfAis a Galcis extension ofAG′with Galois groupG′andCis the center of the subring∑αAG′UαthenA=∑αAG′Uαand the center ofAG′is alsoC. Moreover, if∑αAG′Uαis Azumaya overC, thenAis a projective group ring.



Sign in / Sign up

Export Citation Format

Share Document