scholarly journals Extension of Some Theorems of W. Schwarz

2012 ◽  
Vol 55 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Michael Coons

AbstractIn this paper, we prove that a non–zero power series F(z) ∈ ℂ[[z]] satisfyingwhere d ≥ 2, A(z), B(z) ∈ C[z] with A(z) ≠ 0 and deg A(z), deg B(z) < d is transcendental over ℂ(z). Using this result and a theorem of Mahler’s, we extend results of Golomb and Schwarz on transcendental values of certain power series. In particular, we prove that for all k ≥ 2 the series is transcendental for all algebraic numbers z with |z| < 1. We give a similar result for . These results were known to Mahler, though our proofs of the function transcendence are new and elementary; no linear algebra or differential calculus is used.

2008 ◽  
Vol 144 (1) ◽  
pp. 119-144 ◽  
Author(s):  
ARNAUD DURAND

AbstractA central problem motivated by Diophantine approximation is to determine the size properties of subsets of$\R^d$ ($d\in\N$)of the formwhere ‖⋅‖ denotes an arbitrary norm,Ia denumerable set, (xi,ri)i∈ Ia family of elements of$\R^d\$× (0, ∞) and ϕ a nonnegative nondecreasing function defined on [0, ∞). We show that ifFId, where Id denotes the identity function, has full Lebesgue measure in a given nonempty open subsetVof$\R^d\$, the setFϕbelongs to a class Gh(V) of sets with large intersection inVwith respect to a given gauge functionh. We establish that this class is closed under countable intersections and that each of its members has infinite Hausdorffg-measure for every gauge functiongwhich increases faster thanhnear zero. In particular, this yields a sufficient condition on a gauge functiongsuch that a given countable intersection of sets of the formFϕhas infinite Hausdorffg-measure. In addition, we supply several applications of our results to Diophantine approximation. For any nonincreasing sequenceψof positive real numbers converging to zero, we investigate the size and large intersection properties of the sets of all points that areψ-approximable by rationals, by rationals with restricted numerator and denominator and by real algebraic numbers. This enables us to refine the analogs of Jarník's theorem for these sets. We also study the approximation of zero by values of integer polynomials and deduce several new results concerning Mahler's and Koksma's classifications of real transcendental numbers.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.


1966 ◽  
Vol 9 (05) ◽  
pp. 757-801 ◽  
Author(s):  
W. Kahan

The primordial problems of linear algebra are the solution of a system of linear equations and the solution of the eigenvalue problem for the eigenvalues λk, and corresponding eigenvectors of a given matrix A.


1982 ◽  
Vol 34 (4) ◽  
pp. 952-960 ◽  
Author(s):  
W. T. Tutte

This paper is a continuation of the Waterloo Research Report CORR 81-12, (see [1]) referred to in what follows as I. That Report is entitled “Chromatic Solutions”. It is largely concerned with a power series h in a variable z2, in which the coefficients are polynomials in a “colour number” λ. By definition the coefficient of z2r, where r > 0, is the sum of the chromatic polynomials of the rooted planar triangulations of 2r faces. (Multiple joins are allowed in these triangulations.) Thus for a positive integral λ the coefficient is the number of λ-coloured rooted planar triangulations of 2r faces. The use of the symbol z2 instead of a simple letter t is for the sake of continuity with earlier papers.In I we consider the case(1)where n is an integer exceeding 4.


1970 ◽  
Vol 13 (1) ◽  
pp. 151-152 ◽  
Author(s):  
J. C. Ahuja

Let X1, X2, …, Xn be n independent and identically distributed random variables having the positive binomial probability function1where 0 < p < 1, and T = {1, 2, …, N}. Define their sum as Y=X1 + X2 + … +Xn. The distribution of the random variable Y has been obtained by Malik [2] using the inversion formula for characteristic functions. It appears that his result needs some correction. The purpose of this note is to give an alternative derivation of the distribution of Y by applying one of the results, established by Patil [3], for the generalized power series distribution.


1978 ◽  
Vol 26 (1) ◽  
pp. 31-45 ◽  
Author(s):  
J. H. Loxton ◽  
A. J. van der Poorten

AbstractWe consider algebraic independence properties of series such as We show that the functions fr(z) are algebraically independent over the rational functions Further, if αrs (r = 2, 3, 4, hellip; s = 1, 2, 3, hellip) are algebraic numbers with 0 < |αrs|, we obtain an explicit necessary and sufficient condition for the algebraic independence of the numbers fr(αrs) over the rationals.


Author(s):  
K. Saradha

AbstractLet t be any complex number different from the poles of a Weierstrass elliptic function ℘(z), having algebraic invariants. Then we estimate from below the sum where α and β are algebraic numbers. The estimate is given in terms of the heights of α and β and the degree of the field Q(α, β), where Q is the field of rationals.


1990 ◽  
Vol 33 (3) ◽  
pp. 483-490 ◽  
Author(s):  
I. O. York

In this paper, for R a commutative ring, with identity, of characteristic p, we look at the group G(R) of formal power series with coefficients in R, of the formand the group operation being substitution. The results obtained give the exponent of the quotient groups Gn(R) of this group, n∈ℕ.


Sign in / Sign up

Export Citation Format

Share Document