Boundedness of Differential Transforms for Heat Semigroups Generated by Schrödinger Operators

2020 ◽  
pp. 1-34
Author(s):  
Zhang Chao ◽  
José L. Torrea

Abstract In this paper we analyze the convergence of the following type of series $$\begin{eqnarray}T_{N}^{{\mathcal{L}}}f(x)=\mathop{\sum }_{j=N_{1}}^{N_{2}}v_{j}\big(e^{-a_{j+1}{\mathcal{L}}}f(x)-e^{-a_{j}{\mathcal{L}}}f(x)\big),\quad x\in \mathbb{R}^{n},\end{eqnarray}$$ where ${\{e^{-t{\mathcal{L}}}\}}_{t>0}$ is the heat semigroup of the operator ${\mathcal{L}}=-\unicode[STIX]{x1D6E5}+V$ with $\unicode[STIX]{x1D6E5}$ being the classical laplacian, the nonnegative potential $V$ belonging to the reverse Hölder class $RH_{q}$ with $q>n/2$ and $n\geqslant 3$ , $N=(N_{1},N_{2})\in \mathbb{Z}^{2}$ with $N_{1}<N_{2}$ , ${\{v_{j}\}}_{j\in \mathbb{Z}}$ is a bounded real sequences, and ${\{a_{j}\}}_{j\in \mathbb{Z}}$ is an increasing real sequence. Our analysis will consist in the boundedness, in $L^{p}(\mathbb{R}^{n})$ and in $BMO(\mathbb{R}^{n})$ , of the operators $T_{N}^{{\mathcal{L}}}$ and its maximal operator $T^{\ast }f(x)=\sup _{N}T_{N}^{{\mathcal{L}}}f(x)$ . It is also shown that the local size of the maximal differential transform operators (with $V=0$ ) is the same with the order of a singular integral for functions $f$ having local support. Moreover, if ${\{v_{j}\}}_{j\in \mathbb{Z}}\in \ell ^{p}(\mathbb{Z})$ , we get an intermediate size between the local size of singular integrals and Hardy–Littlewood maximal operator.

Author(s):  
A. L. Bernardis ◽  
F. J. Martín-Reyes

We consider the maximal operator defined on the real line by which is related to the Cesàro convergence of the singular integrals. We characterize the weights w for which Mα is of weak type, strong type and restricted weak type (p, p) with respect to the measure w(x) dx.


2010 ◽  
Vol 53 (1) ◽  
pp. 211-237 ◽  
Author(s):  
Hannes Luiro

AbstractWe establish the continuity of the Hardy-Littlewood maximal operator on W1,p(Ω), where Ω ⊂ ℝn is an arbitrary subdomain and 1 < p < ∞. Moreover, boundedness and continuity of the same operator is proved on the Triebel-Lizorkin spaces Fps,q (Ω) for 1 < p,q < ∞ and 0 < s < 1.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Takeshi Iida

The aim of this paper is to prove the boundedness of the Hardy-Littlewood maximal operator on weighted Morrey spaces and multilinear maximal operator on multiple weighted Morrey spaces. In particular, the result includes the Komori-Shirai theorem and the Iida-Sato-Sawano-Tanaka theorem for the Hardy-Littlewood maximal operator and multilinear maximal function.


2016 ◽  
Vol 59 (3) ◽  
pp. 533-547 ◽  
Author(s):  
ADAM OSȨKOWSKI

AbstractLet $\mathcal{M}$ and G denote, respectively, the maximal operator and the geometric maximal operator associated with the dyadic lattice on $\mathbb{R}^d$. (i)We prove that for any 0 < p < ∞, any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, we have Fefferman–Stein-type estimate $$\begin{equation*} ||G(f)||_{L^p(w)}\leq e^{1/p}||f||_{L^p(\mathcal{M}w)}. \end{equation*} $$ For each p, the constant e1/p is the best possible.(ii)We show that for any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, $$\begin{equation*} \int_{\mathbb{R}^d} G(f)^{1/\mathcal{M}w}w\mbox{d}x\leq e\int_{\mathbb{R}^d} |f|^{1/w}w\mbox{d}x \end{equation*} $$ and prove that the constant e is optimal. Actually, we establish the above estimates in a more general setting of maximal operators on probability spaces equipped with a tree-like structure.


Sign in / Sign up

Export Citation Format

Share Document