Weighted inequalities for a maximal function on the real line

Author(s):  
A. L. Bernardis ◽  
F. J. Martín-Reyes

We consider the maximal operator defined on the real line by which is related to the Cesàro convergence of the singular integrals. We characterize the weights w for which Mα is of weak type, strong type and restricted weak type (p, p) with respect to the measure w(x) dx.

Author(s):  
J. M. Aldaz

We answer questions of A. Carbery, M. Trinidad Menárguez and F. Soria by proving, firstly, that for the centred Hardy–Littlewood maximal function on the real line, the best constant C for the weak type (1, 1) inequality is strictly larger than 3/2, and secondly, that C is strictly less than 2 (known to be the best constant in the noncentred case).


2003 ◽  
Vol 74 (1) ◽  
pp. 111-120
Author(s):  
A. L. Bernardis ◽  
F. J. Martín-Reyes

AbstractWe characterize the pairs of weights (u, v) for which the maximal operator is of weak and restricted weak type (p, p) with respect to u(x)dx and v(x)dx. As a consequence we obtain analogous results for We apply the results to the study of the Cesàro-α convergence of singular integrals.


Author(s):  
Chokri Abdelkefi ◽  
Mohamed Sifi

We establish estimates of the Dunkl translation of the characteristic functionχ[−ɛ,ɛ],ɛ>0, and we prove that the uncentered maximal operator associated with the Dunkl operator is of weak type(1,1). As a consequence, we obtain theLp-boundedness of this operator for1<p≤+∞.


1973 ◽  
Vol 15 (2) ◽  
pp. 243-256 ◽  
Author(s):  
T. K. Sheng

It is well known that no rational number is approximable to order higher than 1. Roth [3] showed that an algebraic number is not approximable to order greater than 2. On the other hand it is easy to construct numbers, the Liouville numbers, which are approximable to any order (see [2], p. 162). We are led to the question, “Let Nn(α, β) denote the number of distinct rational points with denominators ≦ n contained in an interval (α, β). What is the behaviour of Nn(α, + 1/n) as α varies on the real line?” We shall prove that and that there are “compressions” and “rarefactions” of rational points on the real line.


2021 ◽  
Vol 164 (1) ◽  
pp. 133-148
Author(s):  
Łukasz Kamiński ◽  
Adam Osękowski

1997 ◽  
Vol 40 (1) ◽  
pp. 193-205
Author(s):  
Qinsheng Lai

In this paper, we obtain some characterizations for the weighted weak type (1, q) inequality to hold for the Hardy-Littlewood maximal operator in the case 0<q<1; prove that there is no nontrivial weight satisfying one-weight weak type (p, q) inequalities when 0<p≠q< ∞, and discuss the equivalence between the weak type (p, q) inequality and the strong type (p, q) inequality when p≠q.


2020 ◽  
pp. 1-34
Author(s):  
Zhang Chao ◽  
José L. Torrea

Abstract In this paper we analyze the convergence of the following type of series $$\begin{eqnarray}T_{N}^{{\mathcal{L}}}f(x)=\mathop{\sum }_{j=N_{1}}^{N_{2}}v_{j}\big(e^{-a_{j+1}{\mathcal{L}}}f(x)-e^{-a_{j}{\mathcal{L}}}f(x)\big),\quad x\in \mathbb{R}^{n},\end{eqnarray}$$ where ${\{e^{-t{\mathcal{L}}}\}}_{t>0}$ is the heat semigroup of the operator ${\mathcal{L}}=-\unicode[STIX]{x1D6E5}+V$ with $\unicode[STIX]{x1D6E5}$ being the classical laplacian, the nonnegative potential $V$ belonging to the reverse Hölder class $RH_{q}$ with $q>n/2$ and $n\geqslant 3$ , $N=(N_{1},N_{2})\in \mathbb{Z}^{2}$ with $N_{1}<N_{2}$ , ${\{v_{j}\}}_{j\in \mathbb{Z}}$ is a bounded real sequences, and ${\{a_{j}\}}_{j\in \mathbb{Z}}$ is an increasing real sequence. Our analysis will consist in the boundedness, in $L^{p}(\mathbb{R}^{n})$ and in $BMO(\mathbb{R}^{n})$ , of the operators $T_{N}^{{\mathcal{L}}}$ and its maximal operator $T^{\ast }f(x)=\sup _{N}T_{N}^{{\mathcal{L}}}f(x)$ . It is also shown that the local size of the maximal differential transform operators (with $V=0$ ) is the same with the order of a singular integral for functions $f$ having local support. Moreover, if ${\{v_{j}\}}_{j\in \mathbb{Z}}\in \ell ^{p}(\mathbb{Z})$ , we get an intermediate size between the local size of singular integrals and Hardy–Littlewood maximal operator.


2012 ◽  
Vol 54 (3) ◽  
pp. 655-663
Author(s):  
ADAM OSȨKOWSKI

AbstractLet μ be a Borel measure on ℝ. The paper contains the proofs of the estimates and Here A is a subset of ℝ, f is a μ-locally integrable function, μ is the uncentred maximal operator with respect to μ and cp,q, and Cp,q are finite constants depending only on the parameters indicated. In the case when μ is the Lebesgue measure, the optimal choices for cp,q and Cp,q are determined. As an application, we present some related tight bounds for the strong maximal operator on ℝn with respect to a general product measure.


1982 ◽  
Vol 91 (3) ◽  
pp. 477-484
Author(s):  
Gavin Brown ◽  
William Mohan

Let μ be a probability measure on the real line ℝ, x a real number and δ(x) the probability atom concentrated at x. Stam made the interesting observation that eitheror else(ii) δ(x)* μn, are mutually singular for all positive integers n.


Sign in / Sign up

Export Citation Format

Share Document