Some local maximum principles along Ricci flows

2020 ◽  
pp. 1-20
Author(s):  
Man-Chun Lee ◽  
Luen-Fai Tam

Abstract In this work, we obtain a local maximum principle along the Ricci flow $g(t)$ under the condition that $\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$ for $t>0$ for some constant ${\alpha }>0$ . As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for $t>0$ , provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature. By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for $t>0$ .

2008 ◽  
Vol 2008 ◽  
pp. 1-19 ◽  
Author(s):  
M. E. Amendola ◽  
L. Rossi ◽  
A. Vitolo

We are concerned with fully nonlinear uniformly elliptic operators with a superlinear gradient term. We look for local estimates, such as weak Harnack inequality and local maximum principle, and their extension up to the boundary. As applications, we deduce ABP-type estimates and weak maximum principles in general unbounded domains, a strong maximum principle, and a Liouville-type theorem.


2012 ◽  
Vol 09 (05) ◽  
pp. 1250041 ◽  
Author(s):  
SERGIU I. VACARU

There were elaborated different models of Finsler geometry using the Cartan (metric compatible), or Berwald and Chern (metric non-compatible) connections, the Ricci flag curvature, etc. In a series of works, we studied (non)-commutative metric compatible Finsler and non-holonomic generalizations of the Ricci flow theory [see S. Vacaru, J. Math. Phys. 49 (2008) 043504; 50 (2009) 073503 and references therein]. The aim of this work is to prove that there are some models of Finsler gravity and geometric evolution theories with generalized Perelman's functionals, and correspondingly derived non-holonomic Hamilton evolution equations, when metric non-compatible Finsler connections are involved. Following such an approach, we have to consider distortion tensors, uniquely defined by the Finsler metric, from the Cartan and/or the canonical metric compatible connections. We conclude that, in general, it is not possible to elaborate self-consistent models of geometric evolution with arbitrary Finsler metric non-compatible connections.


2015 ◽  
Vol 81 (11) ◽  
pp. 689-715 ◽  
Author(s):  
Ritesh Kumar Dubey ◽  
Biswarup Biswas ◽  
Vikas Gupta

2020 ◽  
Vol 8 ◽  
Author(s):  
Guangming Xue ◽  
Funing Lin ◽  
Guangwang Su

In this paper, the maximum principle of variable-order fractional diffusion equations and the estimates of fractional derivatives with higher variable order are investigated. Firstly, we deduce the fractional derivative of a function of higher variable order at an arbitrary point. We also give an estimate of the error. Some important inequalities for fractional derivatives of variable order at arbitrary points and extreme points are presented. Then, the maximum principles of Riesz-Caputo fractional differential equations in terms of the multi-term space-time variable order are proved. Finally, under the initial-boundary value conditions, it is verified via the proposed principle that the solutions are unique, and their continuous dependance holds.


2018 ◽  
Vol 40 (2) ◽  
pp. 1241-1265 ◽  
Author(s):  
János Karátson ◽  
Balázs Kovács ◽  
Sergey Korotov

AbstractThe maximum principle forms an important qualitative property of second-order elliptic equations; therefore, its discrete analogues, the so-called discrete maximum principles (DMPs), have drawn much attention owing to their role in reinforcing the qualitative reliability of the given numerical scheme. In this paper DMPs are established for nonlinear finite element problems on surfaces with boundary, corresponding to the classical pointwise maximum principles on Riemannian manifolds in the spirit of Pucci & Serrin (2007, The Maximum Principle. Springer). Various real-life examples illustrate the scope of the results.


Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Christian Hilaire

We show that, given an immortal solution to the Ricci flow on a closed manifold with uniformly bounded curvature and diameter, the Ricci tensor goes to zero as . We also show that if there exists an immortal solution on a closed 3-dimensional manifold such that the product of the curvature and the square of the diameter is uniformly bounded, then this solution must be of type III.


2014 ◽  
Vol 16 (02) ◽  
pp. 1350053 ◽  
Author(s):  
ZHOU ZHANG

We provide general discussion on the lower bound of Ricci curvature along Kähler–Ricci flows over closed manifolds. The main result is the non-existence of Ricci lower bound for flows with finite time singularities and non-collapsed global volume. As an application, we give examples showing that positivity of Ricci curvature would not be preserved by Ricci flow in general.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
A. Mareno

We study homogeneous linear elliptic partial differential equations of even order. Several maximum principle results are deduced for such equations as well as a priori bounds for certain boundary value problems.


Sign in / Sign up

Export Citation Format

Share Document