Linear Independence of Logarithms of Cyclotomic Numbers and a Conjecture of Livingston

2019 ◽  
Vol 63 (1) ◽  
pp. 31-45
Author(s):  
Tapas Chatterjee ◽  
Sonika Dhillon

AbstractIn 1965, A. Livingston conjectured the $\overline{\mathbb{Q}}$-linear independence of logarithms of values of the sine function at rational arguments. In 2016, S. Pathak disproved the conjecture. In this article, we give a new proof of Livingston’s conjecture using some fundamental trigonometric identities. Moreover, we show that a stronger version of her theorem is true. In fact, we modify this conjecture by introducing a co-primality condition, and in that case we provide the necessary and sufficient conditions for the conjecture to be true. Finally, we identify a maximal linearly independent subset of the numbers considered in Livingston’s conjecture.

2008 ◽  
Vol 21 (3) ◽  
pp. 309-325 ◽  
Author(s):  
Yury Farkov

This paper gives a review of multiresolution analysis and compactly sup- ported orthogonal wavelets on Vilenkin groups. The Strang-Fix condition, the partition of unity property, the linear independence, the stability, and the orthonormality of 'integer shifts' of the corresponding refinable functions are considered. Necessary and sufficient conditions are given for refinable functions to generate a multiresolution analysis in the L2-spaces on Vilenkin groups. Several examples are provided to illustrate these results. .


2021 ◽  
Vol 27 (4) ◽  
pp. 180-186
Author(s):  
André Pierro de Camargo ◽  
◽  
Giulliano Cogui de Oliveira Teruya ◽  

A problem posed by Lehmer in 1938 asks for simple closed formulae for the values of the even Bernoulli polynomials at rational arguments in terms of the Bernoulli numbers. We discuss this problem based on the Fourier expansion of the Bernoulli polynomials. We also give some necessary and sufficient conditions for ζ(2k + 1) be a rational multiple of π2k+1.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Hai-Jun Su ◽  
Hafez Tari

Motivated by the problem of synthesizing a pattern of flexures that provide a desired constrained motion, this paper presents a new screw theory that deals with “line screws” and “line screw systems.” A line screw is a screw with a zero pitch. The set of all line screws within a screw system is called a line variety. A general screw system of rank m is a line screw system if the rank of its line variety equals m. This paper answers two questions: (1) how to calculate the rank of a line variety for a given screw system and (2) how to algorithmically find a set of linearly independent lines from a given screw system. It has been previously found that a wire or beam flexure is considered a line screw, or more specifically a pure force wrench. By following the reciprocity and definitions of line screws, we have derived the necessary and sufficient conditions of line screw systems. When applied to flexure synthesis, we show that not all motion patterns can be realized with wire flexures connected in parallel. A computational algorithm based on this line screw theory is developed to find a set of admissible line screws or force wrenches for a given motion space. Two flexure synthesis case studies are provided to demonstrate the theory and the algorithm.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


Sign in / Sign up

Export Citation Format

Share Document