Abiotic scaffolds in medicinal chemistry: not a waste of chemical space

2021 ◽  
Vol 13 (2) ◽  
pp. 211-224
Author(s):  
Ronald W Brown

It is well established that medicinal chemists should depart from the flat, sp2-dominated nature of traditional drugs and incorporate complexities of bioactive natural products, such as sp3-richness, 3D topology and chirality. There is a gray area, however, in the relevance of newly developed chemical scaffolds that exhibit these complexities but do not correlate to anything observed in nature. This can leave synthetic methodologists searching for structural similarities between their newly developed products and known natural products in search of justification. This article offers a perspective on how these types of complex ‘abiotic' scaffolds can be appreciated purely on the basis of their structural novelty, and identifies the unique advantages arising when a complex chemical entity unrecognized by nature is introduced to biological systems.

2021 ◽  
Vol 25 ◽  
Author(s):  
Pedro Alves Bezerra Morais ◽  
Carla Santana Francisco ◽  
Heberth de Paula ◽  
Rayssa Ribeiro ◽  
Mariana Alves Eloy ◽  
...  

: Historically, the medicinal chemistry is concerned with the approach of organic chemistry to new drug synthesis. Considering the fruitful collections of new molecular entities, the dedicated efforts for medicinal chemistry are rewarding. Planning and search of new and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since the 19th century, notoriously the application of isolated and characterized plant-derived compounds in modern drug discovery and in various stages of clinical development highlight its viability and significance. Natural products influence a broad range of biological processes, covering transcription, translation, and post-translational modification and being effective modulators of almost all basic cellular processes. The research of new chemical entities through “click chemistry” continuously opens up a map for the remarkable exploration of chemical space in towards leading natural products optimization by structure-activity relationship. Finally, here in this review, we expect to gather a broad knowledge involving triazolic natural products derivatives, synthetic routes, structures, and their biological activities.


Sign in / Sign up

Export Citation Format

Share Document