Chaos synchronization of fractional order time-delay Chen system and its application in secure communication

2012 ◽  
Vol 7 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Jianeng Tang ◽  
Cairong Zou ◽  
Li Zhao
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Eunro Kim ◽  
Inseok Yang ◽  
Dongik Lee

The time-delay robust nonlinear dynamic inversion (TDRNDI) control technique is proposed to synchronize time-delay Chen systems. The time-delay Chen circuit is simple but exhibits complex irregular (chaotic) behavior. For this reason, this circuit can be efficiently used to encrypt messages for secure communication. In this paper, the nonlinear control-based chaos synchronization problem is considered. The proposed TDRNDI controller is a modified version of a robust nonlinear dynamic inversion (RNDI) applicable to chaotic systems, including time-delay systems. The performance and feasibility of the proposed TDRNDI controller are demonstrated by conducting numerical simulations with application to a secure communication network.


2016 ◽  
Vol 40 (4) ◽  
pp. 1177-1187 ◽  
Author(s):  
Hua Wang ◽  
Jian-Min Ye ◽  
Zhong–Hua Miao ◽  
Edmond A Jonckheere

This paper presents finite-time chaos synchronization of time-delay chaotic systems with uncertain parameters. According to the proposed method, a lot of coupled items can be treated as zero items. Thus, the whole system can be simplified greatly. Based on robust chaotic synchronization, secure communication can be realized with a wide range of parameter disturbance and time-delay. Numerical simulations are provided to illustrate the effectiveness of the proposed method.


2013 ◽  
Vol 24 (04) ◽  
pp. 1350025 ◽  
Author(s):  
CHAO LUO ◽  
XINGYUAN WANG

In this paper, a novel dynamic system, the fractional-order complex Chen system, is presented for the first time. Dynamic behaviors of system are studied analytically and numerically. Different routes to chaos are shown, and diverse kinds of motions are identified and exhibited by means of bifurcation diagram, portrait phase and the largest Lyapunov exponent. Secondly, an application to digital secure communication based on the novel system is proposed, in which security is enhanced by continually switching different orders of derivative in an irregular pattern. Furthermore, making full use of the advantage of high-capacity transmission of complex system, the improved digital secure communication scheme is achieved based on hybrid synchronization in coupled fractional-order complex Chen system, that means anti-synchronization in real part of state variables and projective synchronization in imaginary part, respectively. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed schemes.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jianeng Tang

Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.


Sign in / Sign up

Export Citation Format

Share Document